
Provable Security

Henrik Karlsson (henrik10@kth.se)

Supervisors: Mads Dam & Roberto Guanciale
KTH Royal Institute of Technology

October 27, 2022

Henrik Karlsson (KTH) Provable Security October 27, 2022 1 / 22



Outline

1 Example Application & Proof-of-Concept
2 Simply Secure Separation Kernel (S3K)
3 S3K Process Scheduling
4 Multicore HolBA & Kernel Verification
5 Research plan

Henrik Karlsson (KTH) Provable Security October 27, 2022 2 / 22



Example Application & Proof-of-Concept

Henrik Karlsson (KTH) Provable Security October 27, 2022 3 / 22



Application

TCP/IP Decrypt Check Command Read sensor

Control servo

Sys upg

Encrypt TCP/IP

COMMAND RESULT

· · · · · ·

· · · · · ·RTOS

· · · · · ·RTOS

· · · · · ·RTOS

Core0

Core1

Core2

Core2

Henrik Karlsson (KTH) Provable Security October 27, 2022 4 / 22



Application

TCP/IP Decrypt Check Command Read sensor

Control servo

Sys upg

Encrypt TCP/IP

receive
command

decrypt
command decide action

perform action

encrypt result send result

COMMAND RESULT

· · · · · ·

Henrik Karlsson (KTH) Provable Security October 27, 2022 4 / 22



Application

TCP/IP Decrypt Check Command Read sensor

Control servo

Sys upg

Encrypt TCP/IP

has secret has secret3rd party 3rd party
fully trusted

fully trusted

very complex
COMMAND RESULT

· · · · · ·

■ Monitor – Monitors system & handles commands
■ Functions – Interact with environment and output data
■ TCP/IP – Handle TCP/IP communication
■ Crypto engine – Encrypts & Decrypts Packages

Henrik Karlsson (KTH) Provable Security October 27, 2022 4 / 22



Proof-of-Concept

UART Decrypt Check Command f1

f0

Sys upg

Encrypt UART

COMMAND RESULT

· · · · · ·

■ Monitor – Manage apps & handles commands
■ Dummy Functions f0, f1 – Process and output data
■ UART – Handle UART communication
■ Crypto engine – Encrypts & Decrypts Packages

Henrik Karlsson (KTH) Provable Security October 27, 2022 5 / 22



Proof-of-Concept

UART Decrypt Check Command f1

f0

Sys upg

Encrypt UART

COMMAND RESULT

· · · · · ·

■ Monitor – Manage apps & handles commands
■ Dummy Functions f0, f1 – Process and output data
■ UART – Handle UART communication
■ Crypto engine – Encrypts & Decrypts Packages

Henrik Karlsson (KTH) Provable Security October 27, 2022 5 / 22



Proof-of-Concept

UART Decrypt Check Command f1

f0

Sys upg

Encrypt UART

COMMAND RESULT

· · · · · ·

data to f0/f1
or sys upg?

■ Monitor – Manage apps & handles commands
■ Dummy Functions f0, f1 – Process and output data
■ UART – Handle UART communication
■ Crypto engine – Encrypts & Decrypts Packages

Henrik Karlsson (KTH) Provable Security October 27, 2022 5 / 22



Proof-of-Concept

UART Decrypt Check Command f1

f0

Sys upg

Encrypt UART

COMMAND RESULT

· · · · · ·

data to f0/f1
or sys upg?

give time
to f0/f1

■ Monitor – Manage apps & handles commands
■ Dummy Functions f0, f1 – Process and output data
■ UART – Handle UART communication
■ Crypto engine – Encrypts & Decrypts Packages

Henrik Karlsson (KTH) Provable Security October 27, 2022 5 / 22



Proof-of-Concept

UART Decrypt Check Command f1

f0

Sys upg

Encrypt UART

COMMAND RESULT

· · · · · ·

data to f0/f1
or sys upg?

give time
to f0/f1

keep time,
do upgrade

■ Monitor – Manage apps & handles commands
■ Dummy Functions f0, f1 – Process and output data
■ UART – Handle UART communication
■ Crypto engine – Encrypts & Decrypts Packages

Henrik Karlsson (KTH) Provable Security October 27, 2022 5 / 22



Simply Secure Separation Kernel (S3K)

Henrik Karlsson (KTH) Provable Security October 27, 2022 6 / 22



Simply Secure Separation Kernel (S3K)

■ Designed and implemented a separation kernel with . . .

▶ Memory Protection and Management
▶ Secure Time Management for Real-Time Systems
▶ Secure Inter-Process Communication (IPC)
▶ Process Monitoring

■ Targeting standard RISC-V 64-bit (RV64IMA) with MPU1

■ ∼ 2000 lines of C/Assembly

1MPU - Memory Protection Unit, protects physical memory.
Henrik Karlsson (KTH) Provable Security October 27, 2022 7 / 22



Simply Secure Separation Kernel (S3K)

■ Designed and implemented a separation kernel with . . .
▶ Memory Protection and Management

▶ Secure Time Management for Real-Time Systems
▶ Secure Inter-Process Communication (IPC)
▶ Process Monitoring

■ Targeting standard RISC-V 64-bit (RV64IMA) with MPU1

■ ∼ 2000 lines of C/Assembly

1MPU - Memory Protection Unit, protects physical memory.
Henrik Karlsson (KTH) Provable Security October 27, 2022 7 / 22



Simply Secure Separation Kernel (S3K)

■ Designed and implemented a separation kernel with . . .
▶ Memory Protection and Management
▶ Secure Time Management for Real-Time Systems

▶ Secure Inter-Process Communication (IPC)
▶ Process Monitoring

■ Targeting standard RISC-V 64-bit (RV64IMA) with MPU1

■ ∼ 2000 lines of C/Assembly

1MPU - Memory Protection Unit, protects physical memory.
Henrik Karlsson (KTH) Provable Security October 27, 2022 7 / 22



Simply Secure Separation Kernel (S3K)

■ Designed and implemented a separation kernel with . . .
▶ Memory Protection and Management
▶ Secure Time Management for Real-Time Systems
▶ Secure Inter-Process Communication (IPC)

▶ Process Monitoring

■ Targeting standard RISC-V 64-bit (RV64IMA) with MPU1

■ ∼ 2000 lines of C/Assembly

1MPU - Memory Protection Unit, protects physical memory.
Henrik Karlsson (KTH) Provable Security October 27, 2022 7 / 22



Simply Secure Separation Kernel (S3K)

■ Designed and implemented a separation kernel with . . .
▶ Memory Protection and Management
▶ Secure Time Management for Real-Time Systems
▶ Secure Inter-Process Communication (IPC)
▶ Process Monitoring

■ Targeting standard RISC-V 64-bit (RV64IMA) with MPU1

■ ∼ 2000 lines of C/Assembly

1MPU - Memory Protection Unit, protects physical memory.
Henrik Karlsson (KTH) Provable Security October 27, 2022 7 / 22



Simply Secure Separation Kernel (S3K)

■ Designed and implemented a separation kernel with . . .
▶ Memory Protection and Management
▶ Secure Time Management for Real-Time Systems
▶ Secure Inter-Process Communication (IPC)
▶ Process Monitoring

■ Targeting standard RISC-V 64-bit (RV64IMA) with MPU1

■ ∼ 2000 lines of C/Assembly

1MPU - Memory Protection Unit, protects physical memory.
Henrik Karlsson (KTH) Provable Security October 27, 2022 7 / 22



Simply Secure Separation Kernel (S3K)

■ Designed and implemented a separation kernel with . . .
▶ Memory Protection and Management
▶ Secure Time Management for Real-Time Systems
▶ Secure Inter-Process Communication (IPC)
▶ Process Monitoring

■ Targeting standard RISC-V 64-bit (RV64IMA) with MPU1

■ ∼ 2000 lines of C/Assembly

1MPU - Memory Protection Unit, protects physical memory.
Henrik Karlsson (KTH) Provable Security October 27, 2022 7 / 22



Capabilities

Previously mentioned features are implemented using capabilities
■ Capability = object in kernel representing a resource

■ Process owning a capability has access to corresponding resource
■ Process can derive new capabilities from existing capabilities

Kernel

Process X’s capabilities

IPC Endpoint

Time Slice

Memory Slice

Memory Slice

Supervise Y

Process X

Henrik Karlsson (KTH) Provable Security October 27, 2022 8 / 22



Capabilities

Previously mentioned features are implemented using capabilities
■ Capability = object in kernel representing a resource
■ Process owning a capability has access to corresponding resource

■ Process can derive new capabilities from existing capabilities

Kernel

Process X’s capabilities

IPC Endpoint

Time Slice

Memory Slice

Memory Slice

Supervise Y

Process X access memory

send message

Henrik Karlsson (KTH) Provable Security October 27, 2022 8 / 22



Capabilities

Previously mentioned features are implemented using capabilities
■ Capability = object in kernel representing a resource
■ Process owning a capability has access to corresponding resource
■ Process can derive new capabilities from existing capabilities

Kernel

Process X’s capabilities

IPC Endpoint

Time Slice

Memory Slice

Memory Slice

Supervise Y

Process X derive new memory

Memory Slice

Henrik Karlsson (KTH) Provable Security October 27, 2022 8 / 22



S3K Capabilities

■ Memory Slice – Manage access to a physical memory region.
▶ PMP – Configure RISC-V’s MPU, grants memory access.

■ Time Slice – Manage and grant execution time on a core.
■ Channels – Manage IPC channels and endpoints.

▶ Receiver/Sender – Unidirectional IPC channel.
▶ Server/Client – Bidirectional IPC channel.

■ Supervisor – Manage a set of processes.

Henrik Karlsson (KTH) Provable Security October 27, 2022 9 / 22



S3K Capabilities

■ Memory Slice – Manage access to a physical memory region.
▶ PMP – Configure RISC-V’s MPU, grants memory access.

■ Time Slice – Manage and grant execution time on a core.

■ Channels – Manage IPC channels and endpoints.
▶ Receiver/Sender – Unidirectional IPC channel.
▶ Server/Client – Bidirectional IPC channel.

■ Supervisor – Manage a set of processes.

Henrik Karlsson (KTH) Provable Security October 27, 2022 9 / 22



S3K Capabilities

■ Memory Slice – Manage access to a physical memory region.
▶ PMP – Configure RISC-V’s MPU, grants memory access.

■ Time Slice – Manage and grant execution time on a core.
■ Channels – Manage IPC channels and endpoints.

▶ Receiver/Sender – Unidirectional IPC channel.
▶ Server/Client – Bidirectional IPC channel.

■ Supervisor – Manage a set of processes.

Henrik Karlsson (KTH) Provable Security October 27, 2022 9 / 22



S3K Capabilities

■ Memory Slice – Manage access to a physical memory region.
▶ PMP – Configure RISC-V’s MPU, grants memory access.

■ Time Slice – Manage and grant execution time on a core.
■ Channels – Manage IPC channels and endpoints.

▶ Receiver/Sender – Unidirectional IPC channel.
▶ Server/Client – Bidirectional IPC channel.

■ Supervisor – Manage a set of processes.

Henrik Karlsson (KTH) Provable Security October 27, 2022 9 / 22



S3K Process Scheduling

Henrik Karlsson (KTH) Provable Security October 27, 2022 10 / 22



What is Process Scheduling?

Core
timeBrowser

■ Cores can only run one process at the time.

■ Multiplexing the Core – main duty of the kernel.

■ Context switch =⇒ overhead.

■ Core multiplexing technique = Process Scheduling.

■ Best scheduler? Performance vs. Safety vs. Security.

▶ Processor utilization? Supercomputer, Desktop, ...
▶ Meet deadline? Airplane, Car, Routers, Industrial Machines, ...
▶ Prevent side-channels attacks? Secure servers, routers, ...

Henrik Karlsson (KTH) Provable Security October 27, 2022 11 / 22



What is Process Scheduling?

Core
timeBrowser Email Browser Word

■ Cores can only run one process at the time.

■ Multiplexing the Core – main duty of the kernel.

■ Context switch =⇒ overhead.

■ Core multiplexing technique = Process Scheduling.

■ Best scheduler? Performance vs. Safety vs. Security.

▶ Processor utilization? Supercomputer, Desktop, ...
▶ Meet deadline? Airplane, Car, Routers, Industrial Machines, ...
▶ Prevent side-channels attacks? Secure servers, routers, ...

Henrik Karlsson (KTH) Provable Security October 27, 2022 11 / 22



What is Process Scheduling?

Core
timeBrowser Email Browser Word

■ Cores can only run one process at the time.

■ Multiplexing the Core – main duty of the kernel.

■ Context switch =⇒ overhead.

■ Core multiplexing technique = Process Scheduling.

■ Best scheduler? Performance vs. Safety vs. Security.

▶ Processor utilization? Supercomputer, Desktop, ...
▶ Meet deadline? Airplane, Car, Routers, Industrial Machines, ...
▶ Prevent side-channels attacks? Secure servers, routers, ...

Henrik Karlsson (KTH) Provable Security October 27, 2022 11 / 22



What is Process Scheduling?

Core
timeBrowser Email Browser Word

■ Cores can only run one process at the time.

■ Multiplexing the Core – main duty of the kernel.

■ Context switch =⇒ overhead.

■ Core multiplexing technique = Process Scheduling.

■ Best scheduler? Performance vs. Safety vs. Security.

▶ Processor utilization? Supercomputer, Desktop, ...
▶ Meet deadline? Airplane, Car, Routers, Industrial Machines, ...
▶ Prevent side-channels attacks? Secure servers, routers, ...

Henrik Karlsson (KTH) Provable Security October 27, 2022 11 / 22



What is Process Scheduling?

Core
timeBrowser Email Browser Word

■ Cores can only run one process at the time.

■ Multiplexing the Core – main duty of the kernel.

■ Context switch =⇒ overhead.

■ Core multiplexing technique = Process Scheduling.

■ Best scheduler? Performance vs. Safety vs. Security.

▶ Processor utilization? Supercomputer, Desktop, ...
▶ Meet deadline? Airplane, Car, Routers, Industrial Machines, ...
▶ Prevent side-channels attacks? Secure servers, routers, ...

Henrik Karlsson (KTH) Provable Security October 27, 2022 11 / 22



What is Process Scheduling?

Core
timeBrowser Email Browser Word

■ Cores can only run one process at the time.

■ Multiplexing the Core – main duty of the kernel.

■ Context switch =⇒ overhead.

■ Core multiplexing technique = Process Scheduling.

■ Best scheduler? Performance vs. Safety vs. Security.

▶ Processor utilization? Supercomputer, Desktop, ...

▶ Meet deadline? Airplane, Car, Routers, Industrial Machines, ...
▶ Prevent side-channels attacks? Secure servers, routers, ...

Henrik Karlsson (KTH) Provable Security October 27, 2022 11 / 22



What is Process Scheduling?

Core
timeBrowser Email Browser Word

■ Cores can only run one process at the time.

■ Multiplexing the Core – main duty of the kernel.

■ Context switch =⇒ overhead.

■ Core multiplexing technique = Process Scheduling.

■ Best scheduler? Performance vs. Safety vs. Security.

▶ Processor utilization? Supercomputer, Desktop, ...
▶ Meet deadline? Airplane, Car, Routers, Industrial Machines, ...

▶ Prevent side-channels attacks? Secure servers, routers, ...

Henrik Karlsson (KTH) Provable Security October 27, 2022 11 / 22



What is Process Scheduling?

Core
timeBrowser Email Browser Word

■ Cores can only run one process at the time.

■ Multiplexing the Core – main duty of the kernel.

■ Context switch =⇒ overhead.

■ Core multiplexing technique = Process Scheduling.

■ Best scheduler? Performance vs. Safety vs. Security.

▶ Processor utilization? Supercomputer, Desktop, ...
▶ Meet deadline? Airplane, Car, Routers, Industrial Machines, ...
▶ Prevent side-channels attacks? Secure servers, routers, ...

Henrik Karlsson (KTH) Provable Security October 27, 2022 11 / 22



S3K Scheduling

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1
Core

time

major framemajor frame

minor frame

■ Modified RR – Minor frames defined by time slice capabilities.

■ Fair – Process with execution time gets execution time.
■ Predictable – Process knows time slice capabilities, thus their

execution time.
■ Temporal Isolation – A process’s execution time depends only on its

capabilities.
■ Low-overhead – Scheduling decided by a lookup table.
■ Dynamic – Process can alter their time slices.

Henrik Karlsson (KTH) Provable Security October 27, 2022 12 / 22



S3K Scheduling

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1
Core

time

major framemajor frame

minor frame

■ Modified RR – Minor frames defined by time slice capabilities.
■ Fair – Process with execution time gets execution time.

■ Predictable – Process knows time slice capabilities, thus their
execution time.

■ Temporal Isolation – A process’s execution time depends only on its
capabilities.

■ Low-overhead – Scheduling decided by a lookup table.
■ Dynamic – Process can alter their time slices.

Henrik Karlsson (KTH) Provable Security October 27, 2022 12 / 22



S3K Scheduling

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1

buffer time & flush µ-state2

Core
time

major framemajor frame

minor frame

■ Modified RR – Minor frames defined by time slice capabilities.
■ Fair – Process with execution time gets execution time.
■ Predictable – Process knows time slice capabilities, thus their

execution time.

■ Temporal Isolation – A process’s execution time depends only on its
capabilities.

■ Low-overhead – Scheduling decided by a lookup table.
■ Dynamic – Process can alter their time slices.

2Flush cache, branch predictors, etc., support is hardware dependant.
Henrik Karlsson (KTH) Provable Security October 27, 2022 12 / 22



S3K Scheduling

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1

buffer time & flush µ-state2

Core
time

major framemajor frame

minor frame

■ Modified RR – Minor frames defined by time slice capabilities.
■ Fair – Process with execution time gets execution time.
■ Predictable – Process knows time slice capabilities, thus their

execution time.
■ Temporal Isolation – A process’s execution time depends only on its

capabilities.

■ Low-overhead – Scheduling decided by a lookup table.
■ Dynamic – Process can alter their time slices.

2Flush cache, branch predictors, etc., support is hardware dependant.
Henrik Karlsson (KTH) Provable Security October 27, 2022 12 / 22



S3K Scheduling

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1

buffer time & flush µ-state2

Core
time

major framemajor frame

minor frame

■ Modified RR – Minor frames defined by time slice capabilities.
■ Fair – Process with execution time gets execution time.
■ Predictable – Process knows time slice capabilities, thus their

execution time.
■ Temporal Isolation – A process’s execution time depends only on its

capabilities.
■ Low-overhead – Scheduling decided by a lookup table.

■ Dynamic – Process can alter their time slices.

2Flush cache, branch predictors, etc., support is hardware dependant.
Henrik Karlsson (KTH) Provable Security October 27, 2022 12 / 22



S3K Scheduling

P1 P2 P3 P2 P3P0 P0 P0

buffer time & flush µ-state2

Core
time

major framemajor frame

minor frame

■ Modified RR – Minor frames defined by time slice capabilities.
■ Fair – Process with execution time gets execution time.
■ Predictable – Process knows time slice capabilities, thus their

execution time.
■ Temporal Isolation – A process’s execution time depends only on its

capabilities.
■ Low-overhead – Scheduling decided by a lookup table.
■ Dynamic – Process can alter their time slices.
2Flush cache, branch predictors, etc., support is hardware dependant.
Henrik Karlsson (KTH) Provable Security October 27, 2022 12 / 22



Time Slice Capability

begin free end

derived caps. minor frame

capability control area

Corehartid
time

■ hartid – ID of a hardware thread.3

■ begin – start of a time slice

■ free – start of minor frame

■ end – end of a time slice and minor frame

3Hardware Thread – Logically separate processor.
Henrik Karlsson (KTH) Provable Security October 27, 2022 13 / 22



Proof-of-Concept with Time Slices

UART Decrypt Check Command f1

f0

Sys upg

Encrypt UART

COMMAND RESULT

· · · · · ·

Henrik Karlsson (KTH) Provable Security October 27, 2022 14 / 22



Proof-of-Concept with Time Slice

Monitor has the initial time slice

(capabilities)

(scheduling)
Monitor

minor frame

Cap. A ∈ Monitor
begin/free end

Core0
time

Henrik Karlsson (KTH) Provable Security October 27, 2022 15 / 22



Proof-of-Concept with Time Slice

Monitor derives capability B
(only create slices from free to end)

(capabilities)

(scheduling)

minor frame minor frame

Monitor Monitor

Cap. A ∈ Monitor
begin free end

Cap. B ∈ Monitor
begin/free end

Core0
time

Henrik Karlsson (KTH) Provable Security October 27, 2022 15 / 22



Proof-of-Concept with Time Slice

Monitor derives capability C

(capabilities)

(scheduling)
Monitor Monitor

Cap. A ∈ Monitor
begin free/end

Cap. B ∈ Monitor
begin/free end

Cap. C ∈ Monitor
begin/free end

Core0
time

Henrik Karlsson (KTH) Provable Security October 27, 2022 15 / 22



Proof-of-Concept with Time Slice

Monitor derives capability D

Check Command System upgrade

(capabilities)

(scheduling)
Monitor Monitor

Cap. A ∈ Monitor
begin free/end

Cap. B ∈ Monitor
begin/free end

Cap. C ∈ Monitor
begin free/end

Cap. D
begin/free end ∈ Monitor

Core0
time

Henrik Karlsson (KTH) Provable Security October 27, 2022 15 / 22



Proof-of-Concept with Time Slice

Monitor sends capability D to F0
(using IPC or supervisor capability)

Check Command Execute f0

(capabilities)

(scheduling)
Monitor f0

Cap. A ∈ Monitor
begin free/end

Cap. B ∈ Monitor
begin/free end

Cap. C ∈ Monitor
begin free/end

Cap. D
begin/free end ∈ f0

Core0
time

Henrik Karlsson (KTH) Provable Security October 27, 2022 15 / 22



Proof-of-Concept with Time Slice

F0 deletes capability D
(Core idle from free to end)

(capabilities)

(scheduling)
Monitor idle

Cap. A ∈ Monitor
begin free/end

Cap. B ∈ Monitor
begin/free end

Cap. C ∈ Monitor
begin free/end

Core0
time

Henrik Karlsson (KTH) Provable Security October 27, 2022 15 / 22



Proof-of-Concept with Time Slice

Monitor call revoke on capability C
(deletes children & resets C)

(capabilities)

(scheduling)
Monitor Monitor

Cap. A ∈ Monitor
begin free/end

Cap. B ∈ Monitor
begin/free end

Cap. C ∈ Monitor
begin/free end

Core0
time

Henrik Karlsson (KTH) Provable Security October 27, 2022 15 / 22



Proof-of-Concept with Time Slice

Monitor derives capability D again

(capabilities)

(scheduling)
Monitor Monitor

Cap. A ∈ Monitor
begin free/end

Cap. B ∈ Monitor
begin/free end

Cap. C ∈ Monitor
begin free/end

Cap. D
begin/free end ∈ Monitor

Core0
time

Henrik Karlsson (KTH) Provable Security October 27, 2022 15 / 22



Multicore HolBA & Kernel Verification

Henrik Karlsson (KTH) Provable Security October 27, 2022 16 / 22



Multicore HolBA

1:

2:

3:

4:

y = 0

x = 0

y = 1

x = 1

r1 = x

r2 = y

P0 P1

Henrik Karlsson (KTH) Provable Security October 27, 2022 17 / 22



Multicore HolBA

1:

2:

3:

4:

y = 0

x = 0

y = 1

x = 1

r1 = x

r2 = y

P0 P1

Henrik Karlsson (KTH) Provable Security October 27, 2022 17 / 22



Multicore HolBA

1:

2:

3:

4:

y = 0

x = 0

y = 1

x = 1

r1 = x

r2 = y

Memory operations may be reordered in RISC-V.

P0 P1

Henrik Karlsson (KTH) Provable Security October 27, 2022 17 / 22



Multicore HolBA

1:

2:

3:

4:

y = 0

x = 0

x = 1

y = 1

r1 = x

r2 = y

reorder

Writes may be reordered.

P0 P1

Henrik Karlsson (KTH) Provable Security October 27, 2022 17 / 22



Multicore HolBA

1:

2:

3:

4:

y = 0

x = 0

y = 1

x = 1

r1 = x

r2 = y
reorder

Reads may be reordered.

P0 P1

Henrik Karlsson (KTH) Provable Security October 27, 2022 17 / 22



Multicore HolBA

1:

2:

3:

4:

y = 0

x = 0

y = 1

x = 1

r1 = x

r2 = y
reorder

Verification of multicore RISC-V need all reorderings.
Multicore HolBA provides this!

P0 P1

Henrik Karlsson (KTH) Provable Security October 27, 2022 17 / 22



Separation Kernel Example

msg = 0
. . .
msg = 123
done = 1

while (done != 1) {}
return msg;

P0 P1

Henrik Karlsson (KTH) Provable Security October 27, 2022 18 / 22



Separation Kernel Example

msg = 0
. . .
msg = 123
done = 1

while (done != 1) {}
return msg;

P0 P1

Henrik Karlsson (KTH) Provable Security October 27, 2022 18 / 22



Research Plan

Henrik Karlsson (KTH) Provable Security October 27, 2022 19 / 22



Research Plan

■ Dec. 2022 – Complete proof-of-concept

■ Jan./Feb. 2023 – Evaluation and publication of kernel with proof-of-concept

■ Spring 2023

▶ Publication of multicore HolBA
▶ Measurements of WCET4 and jitter of non-preemptive kernel parts
▶ Implement secure interrupts, optimized scheduler, and 32-bit kernel

version

■ Summer 2023

▶ Model and proofs on some concurrent kernel code using
multicore HolBA

▶ Finish sequential high-level model of kernel

■ Autumn 2023 – Finish concurrent high-level model of kernel

4Worst-case execution time
Henrik Karlsson (KTH) Provable Security October 27, 2022 20 / 22



Research Plan

■ Dec. 2022 – Complete proof-of-concept

■ Jan./Feb. 2023 – Evaluation and publication of kernel with proof-of-concept

■ Spring 2023

▶ Publication of multicore HolBA
▶ Measurements of WCET4 and jitter of non-preemptive kernel parts
▶ Implement secure interrupts, optimized scheduler, and 32-bit kernel

version

■ Summer 2023

▶ Model and proofs on some concurrent kernel code using
multicore HolBA

▶ Finish sequential high-level model of kernel

■ Autumn 2023 – Finish concurrent high-level model of kernel

4Worst-case execution time
Henrik Karlsson (KTH) Provable Security October 27, 2022 20 / 22



Research Plan

■ Dec. 2022 – Complete proof-of-concept

■ Jan./Feb. 2023 – Evaluation and publication of kernel with proof-of-concept

■ Spring 2023

▶ Publication of multicore HolBA
▶ Measurements of WCET4 and jitter of non-preemptive kernel parts
▶ Implement secure interrupts, optimized scheduler, and 32-bit kernel

version

■ Summer 2023

▶ Model and proofs on some concurrent kernel code using
multicore HolBA

▶ Finish sequential high-level model of kernel

■ Autumn 2023 – Finish concurrent high-level model of kernel

4Worst-case execution time
Henrik Karlsson (KTH) Provable Security October 27, 2022 20 / 22



Research Plan

■ Dec. 2022 – Complete proof-of-concept

■ Jan./Feb. 2023 – Evaluation and publication of kernel with proof-of-concept

■ Spring 2023

▶ Publication of multicore HolBA
▶ Measurements of WCET4 and jitter of non-preemptive kernel parts
▶ Implement secure interrupts, optimized scheduler, and 32-bit kernel

version

■ Summer 2023

▶ Model and proofs on some concurrent kernel code using
multicore HolBA

▶ Finish sequential high-level model of kernel

■ Autumn 2023 – Finish concurrent high-level model of kernel

4Worst-case execution time
Henrik Karlsson (KTH) Provable Security October 27, 2022 20 / 22



Questions?

Henrik Karlsson (KTH) Provable Security October 27, 2022 21 / 22



Multicore Scheduling

Where does the blue process execute?

CPU0

CPU1

CPU2

CPU3

Process runs on one core, for determinism,5 we need priority rules.
■ currently running core
■ core with smallest ID.

5non-determinism may leak information
Henrik Karlsson (KTH) Provable Security October 27, 2022 22 / 22



Multicore Scheduling

Where does the blue process execute?

CPU0

CPU1

CPU2

CPU3

Process runs on one core, for determinism,5 we need priority rules.
■ currently running core
■ core with smallest ID.

5non-determinism may leak information
Henrik Karlsson (KTH) Provable Security October 27, 2022 22 / 22



Multicore Scheduling

Where does the blue process execute?

CPU0

CPU1

CPU2

CPU3

Process runs on one core, for determinism,5 we need priority rules.
■ currently running core
■ longest quantum (not implemented)
■ core with smallest ID

5non-determinism may leak information
Henrik Karlsson (KTH) Provable Security October 27, 2022 22 / 22


	Example Application & Proof-of-Concept
	Simply Secure Separation Kernel (S3K)
	S3K Process Scheduling
	Multicore HolBA & Kernel Verification
	Research Plan
	Questions?

