
DD2552 semteo23: Homework Problem Set 1

Karl Palmskog

Please hand in your individually written solutions by 18:00, September
22, 2023 on Canvas or by email to palmskog@kth.se.

Solutions will be graded A-F. Problems are marked either E or C. All
E problems must be solved with only minor errors to receive grade E or
higher. C problems also have a number of points, and if you have solved all
E problems with only minor errors, the total number of points will determine
a grade A-E, as follows:

• 0 - 4 points: E

• 5 - 9 points: D

• 10 - 14 points: C

• 15 - 19 points: B

• 20 - 25 points: A

1. Grammars and inductive relations

a) [E] Define a grammar for basic regular expressions. Follow Harper’s
book (PFPL) in giving both abstract syntax and concrete syntax for
your regular expressions, which must include the following:

• the void regular expression, matching nothing

• the unit regular expression, matching the empty string

• the regular expression matching a single character

• the regular expression concatenating (the languages of) two other
regular expressions

• the regular expression alternating (the languages of) two other
regular expressions
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b) [E] Define an inductive relation s ∈ lang(r) using judgment rules be-
tween strings s and regular expressions r that describes when a string
matches a regular expression. Define the relation using judgment rules.

c) [C, 5 points] Extend the regular expression grammar with the Kleene
star operator representing zero or more concatenations of (the lan-
guage of) a regular expression. Extend your inductive relation with
rules for the Kleene star. Briefly argue why your rules capture the
intended meaning of the Kleene star.

2. Combinatory logic and beta reduction

Recall from Harper’s lambda calculus note that the K combinator is defined
as λx.λy.x, and the I combinator is defined as λx.x. We also define the L
combinator as λx.λy.x(yy).

a) [E] Show using the rules for β-equivalence given by Harper (≡β) that
(LK)K ≡β K(KK). Carefully name each rule you use.

b) [E] The β-reduction judgment t ≻β t′ is defined by the same rules as
for β-equivalence, but without the rules for reflexivity or symmetry.
Fully write out and name the rules for ≻β and prove that KI I ≻β I
by providing a derivation tree using your rules. Indicate the name of
the rule used in each rule application.

3. Lambda calculus multiplication

Recall from Harper’s lambda calculus note the Y combinator and definition
of add.

a) [E] Use the following recursion equations to write a definition ofmulproto,
a “prototype” of a multiplication functionmul that takes an additional
argument–the function to be called in lieu of calling itself. You can
use case, succ, and add from Harper’s note without defining them.

x * 0 = 0

x * (y + 1) = x * y + x

b) [C, 5 points] Define mul as Ymulproto and show step-by-step that
mul ≡β mulprotomul. Explain briefly why this equivalence is useful.
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4. Binary tree extension

Consider a binary tree as a data type that doesn’t store any values. In
CakeML, this can be defined as follows:

datatype btree = Leaf | Branch btree btree

a) [E] Follow Harper’s approach with natural numbers from PFPL Chap-
ter 9 and define the syntax for the T language extended with binary
trees, including syntax for trees themselves (and tree types) and a
recursor for trees.

b) [E] Provide statics for your extended T language, i.e., provide a typing
judgment/relation.

c) [E] Provide dynamics for your extended T language, i.e., provide a
reduction judgment/relation.

d) [C, 8 points] Specify and sketch a proof of safety for your extended
language, similar to Harper’s Theorem 9.3.

5. Recursive data types and functions

Consider Harper’s natural numbers from PFPL Chapter 9.

a) [E] Encode natural numbers as an ML-style datatype using CakeML’s
datatype declaration syntax.

b) [E] Define addition as a recursive function add on the natural number
datatype defined in a) using Harper’s recursion equations from the note
about Lambda caculus as a guide. Use CakeML’s function definition
syntax.

c) [E] Define multiplication as a recursive function mul on the natural
number datatype using the recursion equations above as a guide, call-
ing the addition function defined before. Use CakeML’s function defi-
nition syntax.

d) [C, 2 points] Define a “truncated subtraction” function taking two
natural numbers n and m, returning 0 if n is less than or equal to
m, and the usual n−m otherwise. Use CakeML’s function definition
syntax.
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6. General recursive function

Consider a function f on lists defined by the following equations:

f nil l2 = l2

f (h1::t1) l2 = h1::(f l2 t1)

a) [E] Describe briefly in words what the function computes.

b) [E] Provide a version of the function that is structurally recursive.
Sketch an argument that the original function and your function are
extensionally equal (return the same result for the same input).

c) [E] Define a well-founded relation on 2-tuples of lists (a ”measure” on
the input) to demonstrate that the original function terminates.

d) [C, 5 points] Prove carefully that the well-founded relation on input
you defined is indeed well-founded, using the conventional definition
of well-foundedness as absence of infinitely descending chains.
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