
DD2552 semteo23: Homework Problem Set 2

Karl Palmskog

Please hand in your individually written solutions by 18:00, October 13,
2023 on Canvas or by email to palmskog@kth.se.

Solutions will be graded A-F. Problems are marked either E or C. All
E problems must be solved with only minor errors to receive grade E or
higher. C problems also have a number of points, and if you have solved all
E problems with only minor errors, the total number of points will determine
a grade A-E, as follows:

• 0 - 9 points: E

• 10 - 19 points: D

• 20 - 29 points: C

• 30 - 39 points: B

• 40 - 50 points: A

1. Purely Functional Integer Square Root

Assume there is a built-in integer type int like in WhyML and CakeML,
and assume two expressions of this type can be compared by the operator =,
as in if n = 0 then 1 else 2. An integer square root of a non-negative
int value x is the greatest integer less than or equal to the (real-valued)
square root of x. For example, the integer square root of 5 is 2.

a) [E] Propose a contract (requires and ensures) for a function isqrt

computing the integer square root of an argument integer x.

b) [E] Write a purely functional implementation of isqrt that (you be-
lieve) upholds your function contract. You may use auxiliary functions,
and there is no need to prove correctness or termination. Write the
program in a syntax similar to the ML family (e.g., WhyML, CakeML,

1



OCaml, or Standard ML). The function does not need to be efficient.
You may use basic operators on int other than = such as <= and <.

c) [C, 5 points] Sketch a proof that your function upholds your contract.

d) [C, 5 points] Specify a termination measure as a variant declaration
and sketch an argument how and why the measure ensures termination
for all inputs that satisfy your requires declaration.

2. Contract for higher-order function

Consider the following function f defined using WhyML syntax:

let f (eq: ’a -> ’a -> bool) st h (v : ’b) nm =

if eq nm h then v else st nm

a) [E] Describe briefly in words what the function does, assuming eq

represents an equivalence relation.

b) [E] Rewrite the function with a more descriptive name while ensuring
the types of all arguments and the return type are explicitly defined
(i.e., provided as annotations inside the function definition).

c) [E] Propose a meaningful contract for the function in terms of requires
and ensures. Be sure to cover both cases of the conditional.

d) [C, 5 points] Sketch a proof that your contract is upheld.

3. List duplication

Assume you are given a function eq : ’a -> ’a -> bool that represents
a (decidable) equivalence relation.

a) [E] By using rules/judgments, define a relation called in on elements
x:’a and lists l:’a list that represents list containment (“element
is in the list”) using eq for comparison.

b) [E] By using rules/judgments, define a predicate dupfree on lists that
is true whenever the list has no duplicates according to eq.

c) [E] Write a structurally recursive function undup on lists that returns
the argument list but without duplicates according to eq. It is recom-
mended to use one or more auxiliary functions in the function defini-
tion.

2



d) [C, 5 points] Prove by structural induction that for all lists l, dupfree(undup(l)).

4. Integer set abstract datatype

Consider an abstract datatype t representing a set of elements of a built-in
integer type int, with the following three operations:

• empty : t

• add : t -> int -> t

• contains : t -> int -> bool

Consider also a concrete datatype btree of binary trees with int ele-
ments, in CakeML:

datatype btree = Leaf | Branch btree int btree

a) [E] Fully write out an obviously correct implementation of the abstract
type of sets and its operations using a single (polymorphic) list. Use a
syntax similar to the ML family (e.g., WhyML, CakeML, OCaml, or
Standard ML).

b) [E] A btree is a binary search tree (BST) when, for each branch in
the tree, the integer at that branch is greater than every integer in the
branch’s left subtree, and less than each integer in the branch’s right
subtree. Give inductive judgments/rules that specify when a btree is
a BST.

c) [E] Define a btree instance with at least 6 Leaf constructors that is a
BST. Show that the btree is indeed a BST by giving a formal proof
tree using your rules.

c) [E] Implement the integer set abstract datatype using btree, while
ensuring that:

• empty is a BST (according to your definition), and

• if the binary tree argument to add is a BST, then it returns a
binary tree that is a BST.

You can assume that contains is always given a binary tree that is a
BST.

3



d) [E] State the requirements for a relation R between the obviously
correct implementation and your binary tree implementation to be
a bisimulation relation, as per PFPL chapter 17.4.

e) [C, 8 points] Find a bisimulation relation R that relates the obviously
correct integer set implementation and your binary tree implementa-
tion as per PFPL 17.4, and sketch the argument that it fulfills the
requirements.

5. Optimizing depth-first search

We consider the following CakeML basis library function as a black box:

List.member: ’a -> ’a list -> bool

You can assume that this function always runs in linear time in the size of
the input list. Then consider an implementation of depth-first search as a
function dfs in CakeML:

fun fold_left f z s =

case s of

[] => z

| x::s’ => fold_left f (f z x) s’;

fun dfs g n v x =

if List.member x v then v else

if n = 0 then v else fold_left (dfs g (n-1)) (x::v) (g x);

a) [E] Provide the type signatures of fold left and dfs in the same form
as given for List.member above. Briefly explain the meaning of each
argument to dfs in words.

b) [E] Provide, and explain in terms of the underlying graph, the output
value you get from the call dfs (fn x => [x+1,x+3]) 5 [] 0.

c) [C, 5 points] Determine the weakest conditions you can on g, n, and x

such that the function call dfs g n [] x successfully terminates after
having explored the whole graph.

d) [C, 7 points] How could the arguments g and v be represented (purely
functionally) in order to achieve better asymptotic running time than a
naive implementation with lists? Explain briefly and write out a new

4



function and its signature, where, e.g., you assume you have access
to a module with some efficiently implemented abstract type and its
operations.

6. Module type and modules for groups

In abstract algebra, a group is a set of elements T where:

• There is a binary operation ∗ (mul) on elements in T that returns an
element in T .

• There is a special unique element e ∈ T (one).

• There is an inverse operation −1 (inv) on elements in T that returns
an element of T .

a) [E] Define a module type (signature) using the Standard ML or OCaml
syntax that represents an interface to (an abstract type that repre-
sents) a group.

b) [E] Write a module that represents the additive group of natural num-
bers modulo m (i.e., a group using addition modulo m as its operation
mul) which implements your module type. Fix some m ≥ 3 and use
the representation of natural numbers from Homework Problem Set 1
Problem 5, i.e., Harper’s natural numbers as an ML-style datatype.

c) [C, 5 points] Lift the restriction to a fixed modulo in your module
from b) by parameterizing your implementation of the additive group
of natural numbers on a natural number m (assumed to be > 0) using
functors.

7. Dependent types

In a dependently typed language, we can define a sigma type sig A P, with
A a type and P a predicate, which represents the subset of elements in A that
satisfy P. A dependently typed language can also have predicate types as
arguments types to functions, such as Q x for x an argument integer. I.e., a
function f could have type forall (x : int). Q x -> sig A P.

a) [E] Explain briefly how predicate types can be used to express function
preconditions (requires). Exemplify by writing a predicate type based
on your requires of the isqrt function in Problem 1.

5



b) [E] Explain briefly how sigma types can be used to express function
postconditions (ensures). Exemplify by writing a sigma type for your
undup function in Problem 3.

c) [C, 5 points] Write a strong, meaningful specification for the gcd func-
tion below entirely as a (dependent) type that uses predicate types
and a sigma type.

let rec function gcd (a b : int) : int =

if a = 0 then 0

else if b = 0 then 0

else if a = b then a

else if a < b then gcd a (b-a)

else gcd (a-b) a

6


