DD2552 Seminar 1: Functional languages,
abstract syntax trees, variable binding, and
inductive definitions

Karl Palmskog
KTH

Wednesday August 30, 2023

@ Introduction

@® Motivating Examples

© Abstract Syntax, Variable Binding, and Inductive Definitions

@ Introduction

About me

PhD KTH, 2014; postdoc/researcher 2015-2021
lecturer, KTH, 2021-

research areas:
® program verification and proof engineering
® distributed systems (e.g., blockchains)
other teaching:
® DD2443 Parallel and Distributed Computing
® Prosam

email available on Canvas

This course

seminar course on purely functional programming

spans from lambda calculus to efficient data structures
material is useful in formal methods, but no fully formal proofs
focus on principles and (some) practice

Course material

® Practical Foundations of Programming Languages
® Robert Harper
® 2nd Edition, Cambridge University Press, 2016
® http://www.cs.cmu.edu/~rwh /pfpl/abbrev.pdf

® research papers

® CakeML language and compiler https://cakeml.org

http://www.cs.cmu.edu/~rwh/pfpl/abbrev.pdf
https://cakeml.org

What is a functional language?

® Common LISP, Scheme, Standard ML, OCaml, Haskell, ...
® Erlang? Java and C++ due to lambda expressions?
® according to Robert Harper, a functional language should
® give meaning to programs independently of its target
(hardware or software) platform
® support both computation by evaluation and computation
by execution
® support persistent and ephemeral data structures
® have a parallel cost model
® have a rich type structure, supporting modular program
development
® https://existentialtype.wordpress.com/2011/03/16 /what-is-a-
functional-language/

https://existentialtype.wordpress.com/2011/03/16/what-is-a-functional-language/
https://existentialtype.wordpress.com/2011/03/16/what-is-a-functional-language/

Focus of this course

program meaning in terms of mathematical functions and
operational semantics

® computation by “pure” evaluation
® persistent data structures
® rich type structures, including modular structures

Why purely functional?

referential transparency (substituting equals for equals works)
heaps are difficult to reason about

pure functions useful as specifications of other programs
parallelizes easily

useful for message passing concurrency (values don't change)
performance can (still) be good to reasonable

conjectured to be most feasible way to build large formally
verified systems

established mathematical theories and tool support (e.g.,
proof assistants such as Coq and HOL4)

@® Motivating Examples

Example System: CompCert C compiler

® compiler for a realistic subset of C (Misra C with extensions)
® core functionality defined as collection of pure functions

® |anguage specification and machine-checked proofs of
correctness in Coq proof assistant

generated code generally performs better than gcc with O1
optimization

® useful in development of safety critical embedded systems

® ACM System Software Award 2022

® https://compcert.org

https://compcert.org

fun
if

Example Language: Standard ML

strongly typed functional language with full module system
eager evaluation

developed by Milner et al. in 1980s-1990s

rigorously defined semantics

several compilers, including Poly/ML with thread support
impure, but easy to use pure fragment

factorial n =
n =0 then 1 else n * factorial (n - 1)

let
if

Example Language: OCaml

strongly typed functional language with full module system
eager evaluation

developed by Huet, Leroy et al. 1980s-present

compiler defined semantics

thread support in version 5

impure, but easy to use pure fragment

rec fact n =
n =/ Int O then Int 1 else n */ fact (n -/ Int 1)

Example Language: Haskell

® strongly typed functional language with typeclasses
® |azy evaluation

® developed by Peyton Jones et al. 1990s-present

® compiler defined semantics (GHC)

® thread support

® pure

factorial 0 = 1
factorial n n * factorial (n - 1)

Example Language: CakeML

® strongly typed functional language with restricted module
system

eager evaluation

developed by Myreen et al., 2010s-present

fully formalized semantics, embedded in HOL4 proof assistant
bootstrapped compiler with machine-checked correctness
impure, but easy to use pure fragment

no thread support

fun fib n =

case n of
0=>0
| 1 =>1

| n => fib (n - 1) + fib (n - 2)

© Abstract Syntax, Variable Binding, and Inductive Definitions

Course material

® PFPL chapter 1 and chapter 2

® https://lawrencecpaulson.github.io/papers/Aczel-Inductive-
Defs.pdf

® https://www.cs.cmu.edu/~rwh/pfpl/supplements/ulc.pdf

https://lawrencecpaulson.github.io/papers/Aczel-Inductive-Defs.pdf
https://lawrencecpaulson.github.io/papers/Aczel-Inductive-Defs.pdf
https://www.cs.cmu.edu/~rwh/pfpl/supplements/ulc.pdf

Object language vs. meta language

in this course, we define syntax and semantics of some (small)
languages

the language being defined is usually called the object
language

the language we are using to define object languages is called
the meta language

our typical meta language is “mathematical English”, but
could also be some foundational formalism like ZF set theory
or constructive type theory

the "ML" in Standard ML stands for meta language

Grammars and derivations

Consider the following grammar:
Expr — Num | Expr + Expr | Expr — Expr
| Expr * Expr | Expr / Expr | (Expr)
We can derive "4x*(3+5)":

Expr — Expr * Expr — Num * Expr — Num * (Expr) —
Num * (Expr + Expr) — Num % (Num + Expr) —
Num * (Num + Num)

Abstract Syntax Trees

An abstract syntax tree (AST) can represent a set of derivations.

Expr — Expr * Expr — Num * Expr — Num * (Expr) —
Num * (Expr 4+ Expr) — Num * (Num + Expr) —
Num * (Num + Num)

Expr
Expr ‘*' Expr
Num ‘(" Expr ')
Expr ‘+' Expr

Num Num

Adding data to ASTs

Expr
Expr ' Expr
Num ‘(" Expr ')
3
Expr ‘+' Expr

Num Num
2

ASTs and structural induction

Consider a more limited grammar:

Expr — Num | Expr + Expr

We want to prove a property P holds for all ASTs in this grammar.
It then suffices to:

® prove P(n) for all numbers n
® assume P(e) and P(e’) and prove P(e +¢’)

Why does this work? We cover all ways of forming strings
according to grammar.

Variables and substitution

Consider a grammar with variables:
Expr — Num | Expr + Expr | Var

If we have an expression e, we can substitute a variable x for a
number n:

o b/xlx=0band [b/xly=yifx £y
e [b/x]o(ay,...,a,) = o([b/x]ay, ..., [b/z]a,)

Variable binding is important

Let k£ be an unknown but fixed positive integer in the following
definitions of sets:

Ly ={p"q" | n <k}
L, ={p"¢" | n >k}
Ly ={p*q" | k > n}
Ly=A{p"¢"r" | n <k}
Ly = {p"q"r" | n > k}

Variables binding in grammars

Expr — Num | Expr + Expr | Var | Let Var = Expr In Expr

Now the second substitution rule won't work well anymore:

o b/xlx=0band [b/xly=yifx+#y
e [b/x]o(ay,...,a,) = o([b/x]ay, ..., [b/z]a,)

Solution: rename variables to avoid capture (see PFPL for details)

Inductive definitions (“judgments”)

or

® define relation or mathematical structure via rules
e relation name can occur in J; (“recursive call”)
® rules can only be applied finite number of time

Inductive definition examples

0S__EVAL_ NUM

e b my
ey | my
mtm=n

OS_EVAL_PLUS
e t+eln

Inductive derivations

® derive a judgment by reducing it to other judgments via rules

e all reductions must terminate using rules without (inductive)
premises

® derivations are trees with the desired judgment (conclusion)
as root

Ott

® tool for writing grammars and inductive rules
® exportable to LaTeX (also Coq, HOL4, Isabelle/HOL)
® https://github.com/ott-lang/ott

https://github.com/ott-lang/ott

{{ com
{{ coq

{{ coq

Ott grammar example

:: var {{ com variable }}
:: num {{ com number }}

:: plus {{ com plus }}
:: times {{ com times }}

:= e in

let }}

/ x] ::

e' :: :: def (+ bind x in e' +)

M :: subst

substitution }}

(subst_
| Ce) ::

: S
([LelDD

e [[e']l]l [[x]] [lell) }}

parentheses

1}

Ott grammar using generated LaTeX

x
n

e+ ¢

ex* e

let z:= ein¢
ele’ /1]

(e)

bind zin €
M
S

variable
number
plus

times

let
substitution

Ott rules example

defn
e > e' :: :: red :: red_
{{ com reduction step }} by

el + e2 > e'l + e2

Ott rules using generated LaTeX

77,1 + n2 =N
— OS_RED_ PLUS
n+ny—n

/

S OS_RED_ PLUS_ L
et e —et e

Semantics of expressions using rules

e— ¢

— OS_RED_ PLUS R
n+e—n+e

TLl * n2 =n
—— OS_RED__TIMES
ng %Ny — N

e, — e
1 1
OS RED TIMES L

/
e * ey — €] * €&

e— ¢
— OS RED_ TIMES R
n¥e— nxe

e, — e
OS RED LET

— e i — o i
letz:= ¢ ine, — letz:= ¢jine,

0S__RED_ BIND

let z:= nin e, — e,[n/x]

Using the reduction relation

we are given some expression AST e

consider reflexive-transitive closure of — on expressions

if e =* n, then n is the result of evaluating e

to find and prove e —* n, we may have to do a lot of deriving

Alternative inductive relation

0S__EVAL NUM

nln
e I my
ey b my
n+ny,=mn
MM ER s BvAL PLUS
e +eln
e b my
ey I my
Ny * Ny =N
MR =R 0S EVAL TIMES
epxe b n
e I my
eylni /x| |
(/2] ¥ g OS EVAL LET

let z:=¢ ine, | n,

How is this related to —7

	Introduction
	Motivating Examples
	Abstract Syntax, Variable Binding, and Inductive Definitions

