
DD2552 Seminar 1: Functional languages,
abstract syntax trees, variable binding, and

inductive definitions

Karl Palmskog

KTH

Wednesday August 30, 2023

1 Introduction

2 Motivating Examples

3 Abstract Syntax, Variable Binding, and Inductive Definitions

1 Introduction

2 Motivating Examples

3 Abstract Syntax, Variable Binding, and Inductive Definitions

About me

• PhD KTH, 2014; postdoc/researcher 2015-2021
• lecturer, KTH, 2021-
• research areas:

• program verification and proof engineering
• distributed systems (e.g., blockchains)

• other teaching:
• DD2443 Parallel and Distributed Computing
• Prosam

• email available on Canvas

This course

• seminar course on purely functional programming
• spans from lambda calculus to efficient data structures
• material is useful in formal methods, but no fully formal proofs
• focus on principles and (some) practice

Course material

• Practical Foundations of Programming Languages
• Robert Harper
• 2nd Edition, Cambridge University Press, 2016
• http://www.cs.cmu.edu/~rwh/pfpl/abbrev.pdf

• research papers
• CakeML language and compiler https://cakeml.org

http://www.cs.cmu.edu/~rwh/pfpl/abbrev.pdf
https://cakeml.org

What is a functional language?

• Common LISP, Scheme, Standard ML, OCaml, Haskell, …
• Erlang? Java and C++ due to lambda expressions?
• according to Robert Harper, a functional language should

• give meaning to programs independently of its target
(hardware or software) platform

• support both computation by evaluation and computation
by execution

• support persistent and ephemeral data structures
• have a parallel cost model
• have a rich type structure, supporting modular program

development
• https://existentialtype.wordpress.com/2011/03/16/what-is-a-

functional-language/

https://existentialtype.wordpress.com/2011/03/16/what-is-a-functional-language/
https://existentialtype.wordpress.com/2011/03/16/what-is-a-functional-language/

Focus of this course

• program meaning in terms of mathematical functions and
operational semantics

• computation by “pure” evaluation
• persistent data structures
• rich type structures, including modular structures

Why purely functional?

• referential transparency (substituting equals for equals works)
• heaps are difficult to reason about
• pure functions useful as specifications of other programs
• parallelizes easily
• useful for message passing concurrency (values don’t change)
• performance can (still) be good to reasonable
• conjectured to be most feasible way to build large formally

verified systems
• established mathematical theories and tool support (e.g.,

proof assistants such as Coq and HOL4)

1 Introduction

2 Motivating Examples

3 Abstract Syntax, Variable Binding, and Inductive Definitions

Example System: CompCert C compiler

• compiler for a realistic subset of C (Misra C with extensions)
• core functionality defined as collection of pure functions
• language specification and machine-checked proofs of

correctness in Coq proof assistant
• generated code generally performs better than gcc with O1

optimization
• useful in development of safety critical embedded systems
• ACM System Software Award 2022
• https://compcert.org

https://compcert.org

Example Language: Standard ML

• strongly typed functional language with full module system
• eager evaluation
• developed by Milner et al. in 1980s-1990s
• rigorously defined semantics
• several compilers, including Poly/ML with thread support
• impure, but easy to use pure fragment

fun factorial n =
if n = 0 then 1 else n * factorial (n - 1)

Example Language: OCaml

• strongly typed functional language with full module system
• eager evaluation
• developed by Huet, Leroy et al. 1980s-present
• compiler defined semantics
• thread support in version 5
• impure, but easy to use pure fragment

let rec fact n =
if n =/ Int 0 then Int 1 else n */ fact (n -/ Int 1)

Example Language: Haskell

• strongly typed functional language with typeclasses
• lazy evaluation
• developed by Peyton Jones et al. 1990s-present
• compiler defined semantics (GHC)
• thread support
• pure

factorial 0 = 1
factorial n = n * factorial (n - 1)

Example Language: CakeML

• strongly typed functional language with restricted module
system

• eager evaluation
• developed by Myreen et al., 2010s-present
• fully formalized semantics, embedded in HOL4 proof assistant
• bootstrapped compiler with machine-checked correctness
• impure, but easy to use pure fragment
• no thread support

fun fib n =
case n of
0 => 0

| 1 => 1
| n => fib (n - 1) + fib (n - 2)

1 Introduction

2 Motivating Examples

3 Abstract Syntax, Variable Binding, and Inductive Definitions

Course material

• PFPL chapter 1 and chapter 2
• https://lawrencecpaulson.github.io/papers/Aczel-Inductive-

Defs.pdf
• https://www.cs.cmu.edu/~rwh/pfpl/supplements/ulc.pdf

https://lawrencecpaulson.github.io/papers/Aczel-Inductive-Defs.pdf
https://lawrencecpaulson.github.io/papers/Aczel-Inductive-Defs.pdf
https://www.cs.cmu.edu/~rwh/pfpl/supplements/ulc.pdf

Object language vs. meta language

• in this course, we define syntax and semantics of some (small)
languages

• the language being defined is usually called the object
language

• the language we are using to define object languages is called
the meta language

• our typical meta language is “mathematical English”, but
could also be some foundational formalism like ZF set theory
or constructive type theory

• the “ML” in Standard ML stands for meta language

Grammars and derivations

Consider the following grammar:

Expr → Num | Expr + Expr | Expr − Expr
| Expr ∗ Expr | Expr / Expr | (Expr)

We can derive "4*(3+5)":

Expr → Expr ∗ Expr → Num ∗ Expr → Num ∗ (Expr) →
Num ∗ (Expr + Expr) → Num ∗ (Num + Expr) →
Num ∗ (Num + Num)

Abstract Syntax Trees

An abstract syntax tree (AST) can represent a set of derivations.

Expr → Expr ∗ Expr → Num ∗ Expr → Num ∗ (Expr) →
Num ∗ (Expr + Expr) → Num ∗ (Num + Expr) →
Num ∗ (Num + Num)

Adding data to ASTs

ASTs and structural induction

Consider a more limited grammar:

Expr → Num | Expr + Expr

We want to prove a property 𝑃 holds for all ASTs in this grammar.
It then suffices to:

• prove 𝑃(𝑛) for all numbers 𝑛
• assume 𝑃 (𝑒) and 𝑃(𝑒′) and prove 𝑃(𝑒 + 𝑒′)

Why does this work? We cover all ways of forming strings
according to grammar.

Variables and substitution

Consider a grammar with variables:

Expr → Num | Expr + Expr | 𝑉 𝑎𝑟

If we have an expression 𝑒, we can substitute a variable 𝑥 for a
number 𝑛:

• [𝑏/𝑥]𝑥 = 𝑏 and [𝑏/𝑥]𝑦 = 𝑦 if 𝑥 ≠ 𝑦
• [𝑏/𝑥]𝑜(𝑎1, … , 𝑎𝑛) = 𝑜([𝑏/𝑥]𝑎1, … , [𝑏/𝑥]𝑎𝑛)

Variable binding is important

Let 𝑘 be an unknown but fixed positive integer in the following
definitions of sets:

• 𝐿1 = {𝑝𝑛𝑞𝑛 | 𝑛 ≤ 𝑘}
• 𝐿2 = {𝑝𝑛𝑞𝑘 | 𝑛 > 𝑘}
• 𝐿3 = {𝑝𝑘𝑞𝑛 | 𝑘 > 𝑛}
• 𝐿4 = {𝑝𝑛𝑞𝑛𝑟𝑛 | 𝑛 ≤ 𝑘}
• 𝐿5 = {𝑝𝑛𝑞𝑛𝑟𝑛 | 𝑛 ≥ 𝑘}

Variables binding in grammars

Expr → Num | Expr + Expr | Var | Let Var = Expr In Expr

Now the second substitution rule won’t work well anymore:
• [𝑏/𝑥]𝑥 = 𝑏 and [𝑏/𝑥]𝑦 = 𝑦 if 𝑥 ≠ 𝑦
• [𝑏/𝑥]𝑜(𝑎1, … , 𝑎𝑛) = 𝑜([𝑏/𝑥]𝑎1, … , [𝑏/𝑥]𝑎𝑛)

Solution: rename variables to avoid capture (see PFPL for details)

Inductive definitions (“judgments”)

𝐽1
⋯
𝐽𝑛
𝐽

or
𝐽1 … 𝐽𝑛

𝐽
• define relation or mathematical structure via rules
• relation name can occur in 𝐽𝑖 (“recursive call”)
• rules can only be applied finite number of time

Inductive definition examples

n ⇓ n os_eval_num

e1 ⇓ n1
e2 ⇓ n2
n1 + n2 = n
e1 + e2 ⇓ n os_eval_plus

Inductive derivations

• derive a judgment by reducing it to other judgments via rules
• all reductions must terminate using rules without (inductive)

premises
• derivations are trees with the desired judgment (conclusion)

as root

Ott

• tool for writing grammars and inductive rules
• exportable to LaTeX (also Coq, HOL4, Isabelle/HOL)
• https://github.com/ott-lang/ott

https://github.com/ott-lang/ott

Ott grammar example

grammar
e :: e_ ::=

| x :: :: var {{ com variable }}
| n :: :: num {{ com number }}
| e + e' :: :: plus {{ com plus }}
| e * e' :: :: times {{ com times }}
| let x := e in e' :: :: def (+ bind x in e' +)

{{ com let }}
| e [e' / x] :: M :: subst

{{ com substitution }}
{{ coq (subst_e [[e']] [[x]] [[e]]) }}

| (e) :: S :: parentheses
{{ coq ([[e]]) }}

Ott grammar using generated LaTeX

e ∶∶=
| x variable
| n number
| e + e′ plus
| e ∗ e′ times
| let x ∶= e in e′ bind x in e′ let
| e[e′/x] M substitution
| (e) S

Ott rules example

defn
e -> e' :: :: red :: red_
{{ com reduction step }} by

n1 + n2 = n
------------ :: plus
n1 + n2 -> n

e1 -> e'1
------------------- :: plus_l
e1 + e2 -> e'1 + e2

Ott rules using generated LaTeX

n1 + n2 = n
n1 + n2 → n os_red_plus

e1 → e′
1

e1 + e2 → e′
1 + e2

os_red_plus_l

Semantics of expressions using rules

e → e′

n + e → n + e′ os_red_plus_r

n1 ∗ n2 = n
n1 ∗ n2 → n os_red_times

e1 → e′
1

e1 ∗ e2 → e′
1 ∗ e2

os_red_times_l

e → e′

n ∗ e → n ∗ e′ os_red_times_r

e1 → e′
1

let x ∶= e1 in e2 → let x ∶= e′
1 in e2

os_red_let

let x ∶= n in e2 → e2[n/x] os_red_bind

Using the reduction relation

• we are given some expression AST 𝑒
• consider reflexive-transitive closure of → on expressions
• if 𝑒 →∗ 𝑛, then 𝑛 is the result of evaluating 𝑒
• to find and prove 𝑒 →∗ 𝑛, we may have to do a lot of deriving

Alternative inductive relation

n ⇓ n os_eval_num

e1 ⇓ n1
e2 ⇓ n2
n1 + n2 = n
e1 + e2 ⇓ n os_eval_plus

e1 ⇓ n1
e2 ⇓ n2
n1 ∗ n2 = n
e1 ∗ e2 ⇓ n os_eval_times

e1 ⇓ n1
e2[n1/x] ⇓ n2

let x ∶= e1 in e2 ⇓ n2
os_eval_let

How is this related to →?

	Introduction
	Motivating Examples
	Abstract Syntax, Variable Binding, and Inductive Definitions

