
DD2552 Seminar 10: Purely functional data
structures, I

Karl Palmskog

KTH

Thursday September 28, 2023



Course material

• “Purely functional data structures”, book by Chris Okasaki
(not at KTHB)

• see freely available PhD thesis,
https://www.cs.cmu.edu/~rwh/students/okasaki.pdf

https://www.cs.cmu.edu/~rwh/students/okasaki.pdf


Advantages of purely functional data

• ease of reasoning (functional correctness)
• no mutation, “old” data continues to exists (if referenced)
• in general, fewer lines of code



Performance analysis

• focus on ML family of languages, asymptotic behavior
• assume eager evaluation
• we view datatypes as implemented via pointers

• lists are similar to linked lists
• cons takes 𝑂(1) time
• append (++) takes 𝑂(𝑛) time

• more formally, need a cost semantics
• outside scope of course



Heap interface

signature HEAP = sig
structure Elem : ORDERED
type Heap
val empty : Heap
val isEmpty : Heap -> bool
val insert : Elem.T * Heap -> Heap
val merge : Heap * Heap -> Heap
val findMin : Heap -> Elem.T
val deleteMin : Heap -> Heap

end



Leftist Heaps

• invented by Donald Knuth in 1970s
• heap-ordered binary trees
• satisfy the leftist property: the rank of any left child is at least

as large as the rank of its right sibling
• rank of node is the length of its right spine

• rightmost path from the node in question to an empty node



SML implementation

functor LeftistHeap (Element : ORDERED) : HEAP =
structure Elem = Element
datatype Heap = E | T of int * Elem.T * Heap * Heap

fun rank E = 0
| rank T (r, _, _, _) = r

fun makeT (x, a, b) =
if rank a >= rank b then T (rank b + 1, x, a, b)
else T (rank a + 1, x, b, a)

val empty = E
fun isEmpty E = true | isEmpty _ = false

(* ... *)
end



SML implementation, continued
“two [leftist] heaps can be merged by merging their right
spines as you would merge two sorted lists, and then swap-
ping the children of nodes along this path as necessary to
restore the leftist property” -Okasaki

fun merge (h, E) = h
| merge (E, h) = h
| merge (h1 as T(_, x, a1, b1), h2 as T(_, y, a2, b2)) =
if Elem.leq (x, y) then makeT (x, a1, merge (b1, h2))
else makeT (y, a2, merge (h1, b2))

fun insert (x, h) = merge (T (1, x, E, E), h)

fun findMin E = raise EMPTY
| findMin T (_, x, _, _) = x

fun deleteMin E = raise EMPTY
| deleteMin T (_, _, a, b) = merge (a, b)



Performance analysis

• length of each right spine is at most logarithmic, so merge
runs in 𝑂(log 𝑛)

• so, insert and deleteMin run in 𝑂(log 𝑛)
• findMin and isEmpty run in 𝑂(1)



Binomial heaps

• constructed from binomial trees
• binomial tree of rank 0 is a singleton node
• binomial tree of rank 𝑟 + 1 constructed by linking two binomial

trees of rank 𝑟, making one tree the leftmost child of the other
• binomial heaps are lists of binomial trees where no trees have

the same rank
• can be “faster” than leftist heaps



SML implementation

functor BinomialHeap (Element : ORDERED) : HEAP =
struct
structure Elem = Element
datatype Tree = Node of int * Elem.T * Tree list
type Heap = Tree list
fun rank (Node (r, x, c)) = r
fun root (Node (r, x, c)) = x
(* ... *)

end



SML implementation, continued

fun link (t1 as Node(r, x1, c1), t2 as Node(_, x2, c2)) =
if Elem.leq (x1, x2) then Node (r + 1, x1, t2::c1)
else Node (r + 1, x2, t1::c2)

fun insTree (t, []) = [t]
| insTree (t, ts as t'::ts') =
if rank t < rank t' then t::ts
else insTree (link (t t'), ts')



SML implementation, continued

fun insert (x, ts) = insTree (Node (0, x, []), ts)

fun merge (ts1, []) = ts1
| merge ([], ts2) = ts2
| merge (ts1 as t1::ts1', ts2 as t2::ts2') =
if rank t1 < rank t2 then t1::merge (ts1', ts2)
else if rank t2 < rank t1 then t2::merge (ts2', ts1)
else insTree (link (t1, t2), merge (ts1', ts2'))



SML implementation, continued

fun removeMinTree [] = raise EMPTY
| removeMinTree [t] = (t, [])
| removeMinTree (t::ts) =
let val (t', ts') = removeMinTree ts in
if Elem.leq (root t, root t') then (t, ts)
else (t', t::ts') end

fun findMin ts =
let val (t, _) = removeMinTree ts in root t end

fun deleteMin ts =
let val (Node (_, x, ts1), ts2) = removeMinTree ts
in merge (rev ts1, ts2) end



Performance analysis

• worst case is insertion into a heap of size 𝑛 = 2𝑘 − 1,
𝑂(log 𝑛) time

• merge, findMin, deleteMin also 𝑂(log 𝑛) time



Queue interface

signature QUEUE = sig
type 'a queue
val empty : 'a queue
val isEmpty : 'a queue -> bool
val snoc : 'a queue * 'a -> 'a queue
val head : 'a queue -> 'a
val tail : 'a queue -> 'a queue

end



Batched queues

• use a pair of lists



CakeML implementation fragment
datatype 'a queue = Q ('a list) ('a list)

val empty = Q [] []

fun isEmpty q =
case q of Q [] xs => True | _ => False

fun checkf q = case q of Q [] xs =>
(Q (reverse xs) []) | _ => q

fun snoc q x = case q of
Q f r => (checkf (Q f (x::r)))

fun head q = case q of
Q (x::_) _ => x

fun tail q = case q of
Q (_::f) r => (checkf (Q f r))



Performance analysis

• snoc and head in 𝑂(1) worst-case time
• tail takes 𝑂(𝑛) worst-case time
• but tail runs in 𝑂(1) amortized time

• every element in second list has 1 credit
• every snoc takes one step and allocates credit to new element

(cost 2)
• every tail that doesn’t reverse list takes one step (cost 1)
• every tail that reverses list uses up all credits and takes a

step (cost 1)
• is this implementation suitable for concurrency? Not really.

• but “cannot be beat” otherwise



Anecdote on performance analysis

• mutation analysis is about:
• modifying a software system, creating a mutant
• seeing if tests/verification “kills” mutant

• surviving mutants may indicate inadequate tests/verification
• a mutant of merge sort survived formal functional correctness

proofs
• “missing” invariant: merging needs to be done on

powers-of-two sized lists, otherwise get 𝑂(𝑛2) instead of
𝑂(𝑛 log 𝑛) sorting time



Pairing heaps

• heap-ordered multiway trees
• perform well in practice



SML implementation

functor PairingHeap (Element : ORDERED) : HEAP =
struct
structure Elem = Element
datatype Heap = E | T of Elem.T * Heap list
val empty = E
fun isEmpty E = true | isEmpty _ = false
(* ... *)

end



SML implementation, continued

fun merge (h, E) = h
| merge (E, h) = h
| merge (h1 as T (x, hs1), h2 as T (y, hs2)) =
if Elem.leq (x, y) then T (x, h2::hs1)
else T (y, h1::hs2)

fun insert (x, h) = merge (T (x, []), h)

fun mergePairs [] = E
| mergePairs [h] = h
| mergePairs (h1::h2::hs) =
merge (merge (h1, h2), mergePairs hs)



SML implementation, continued

fun findMin E = raise EMPTY
| findMin (T (x, hs)) = x

fun deleteMin E = raise EMPTY
| deleteMin (T (x, hs)) = mergePairs hs


