DD2552 Seminar 12: Advanced topics

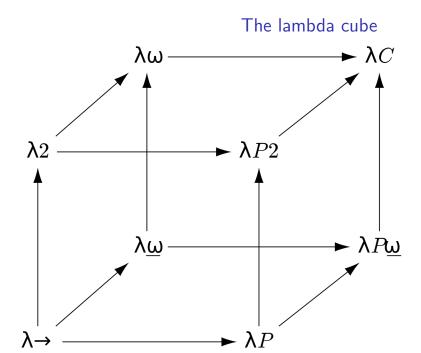
Karl Palmskog

KTH

Wednesday October 11, 2023

Course material

- https://plato.stanford.edu/entries/type-theory-church/
 - Church: A Formulation of the Simple Theory of Types (1940)
- Thorsten Altenkirch: Dependent types, http://www.cs.nott.ac.uk/~psztxa/oplss-22/dependent.pdf
- https://plato.stanford.edu/entries/type-theory-intuitionistic



Breakdown of lambda cube

- x-axis: types that can bind terms
- y-axis: terms that can bind types
- z-axis: types that can bind types
- $\lambda \rightarrow$, simply typed lambda calculus
- $\lambda 2$, System F, "second order lambda calculus"
- $\lambda \underline{\omega}$, System F $\underline{\omega}$, "types depend on types"
- λP , Lambda-P, "Logical Framework"
- $\lambda \omega$, System F ω , terms/types depend on types
- λC , Calculus of Constructions, terms/types depend on terms/types

Significance of lambda cube

- foundations for different languages and tools
 - $\lambda 2$ (System F) for Haskell, Standard ML
 - λC (Calculus of Constructions) for Coq, Idris
- expressive power vs. decidability and ease of implementation

Functional languages and logic

- lambda cube languages describe computable functions
 - higher-order functions
 - bool is a datatype
 - reasoning happens outside language
- first-order logic describes (semi-decidable) formulas
 - reasoning is the whole point
 - encoding of some functions using signatures
- can we combine lambda functions and logic?

Simply typed lambda calculus as a logic

Types:

- *ι* is the type of individuals
- *o* is the type of truth values (Booleans)
- if α and β are types, then $\alpha \to \beta$ is a type

Primitive constants:

• $\sim: o \rightarrow o$ (negation) • $\lor: o \rightarrow (o \rightarrow o)$ (disjunction) • $\prod: (\alpha \rightarrow o) \rightarrow o$ (for all) • $\epsilon: (\alpha \rightarrow o) \rightarrow \alpha$ (choice)

Derived constants:

- $\bullet \ A \wedge B \text{ is } \sim (\sim A \vee \sim B)$
- $A \Rightarrow B$ is $(\sim A) \lor B$
- $\forall x_{\alpha}.A_{o} \text{ is } \prod(\lambda x_{\alpha}A_{o})$

Equality

- we can quantify over all predicates (one-place functions on o)
- this allows representing equality using the "Leibniz approach"
- we can also represent induction principles

Define Q as

$$\lambda x_{\alpha}.\lambda y_{\alpha}.\forall f_{\alpha \to o}.f \, x \Rightarrow f \, y$$

Then define $A_{\alpha} = B_{\alpha}$ as $Q \ A_{\alpha}B_{\alpha}$. What is the type of Q?

Example

"Napoleon's soldiers admire him"

$$\begin{split} (\lambda n_{\iota}.\forall x_{\iota}.\text{Soldier}_{\iota \to o}\, x_{\iota} \wedge \text{CommanderOf}_{\iota \to \iota}x_{\iota} &= n_{\iota} \\ \Rightarrow \text{Admires}_{\iota \to (\iota \to o)}x_{\iota}n_{\iota})\text{Napoleon}_{\iota} \end{split}$$

Axioms in the system

- Alpha-conversion: changing the names of bound variables consistently.
- Beta-contraction: performing λ -application-substitutions inside terms.
- Beta-expansion: infer C from D if D can be inferred from C by one beta-contraction.
- Substitution: from $F_{\alpha \to o} \, x_\alpha$, infer $F \, A_\alpha$ when x not free in F
- Modus Ponens: from $A_o \rightarrow B_o$ and A_o , infer B_o
- Generalization: from $F_{\alpha\to o}\,x_\alpha,$ infer $\forall x_\alpha.Fx_\alpha$ when x not free in F
- Boolean and function extensionality
- Choice: $(\exists x_{\alpha}.P x) \Rightarrow P(\epsilon P)$
- Axiom of infinity

Dependent types

- not allowing types to depend on terms means no type Rⁿ of vector spaces, for n : nat
- Calculus of Constructions lifts this restriction
- we assume
 - a universe of types U
 - a type A:U
 - a family of types $B: A \to U$
- dependent functions: $(x:A) \rightarrow B(x)$, also $\prod (x:A)B(x)$
- dependent sums: $(x:A) \times B(x)$, also $\sum (x:A)B(x)$
- if B does not depend on x, i.e., B(x) = B is constant:
 - we get familiar $A \to B$
 - we get familiar $A \times B$

Logical operations with dependent types

- $A \wedge B$ reduces to $A \times B = (x:A) \times B$
- $A \Rightarrow B$ reduces to $A \rightarrow B = (x:A) \rightarrow B$
- $(\forall x:A)B(x)$ reduces to $(x:A) \rightarrow B(x)$
- $(\exists x:A)B(x)$ reduces to $(x:A) \times B(x)$
- $A \lor B$ reduces to A + B
- $\sim A$ reduces to $(x:A) \rightarrow \bot,$ for empty type \bot

How is this different from classical logic?

Example

$\forall m: \texttt{nat}. \exists n: \texttt{nat}. m < n \land \texttt{Prime}\, n$

$\prod m: \texttt{nat.} \sum n: \texttt{nat}. m < n \times \texttt{Prime}\, n$

Equality and dependent types

- not as straightforward as for simple types
- judgmental equality: normal forms of terms are identical
- can manually define identity relation directly for a type like nat ("propositionally equal" nats)
- more promising approach: a general "identity type former"
 - does not provide extensional equality (of functions)
 - distinguishes propositional and judgmental equality
- extensional type theory: type checking becomes undecidable
 - but extensional equality (of functions)
 - conflates propositional and judgmental equality

Why logic inside a type theory?

- no separate metalanguage for reasoning
- basic tooling via implementation of type checker
- establish (near-arbitrary) properties of functions and data
- soundness of reasoning reduces to soundness of type theory (rules)