
DD2552 Seminar 12: Advanced topics

Karl Palmskog

KTH

Wednesday October 11, 2023



Course material

• https://plato.stanford.edu/entries/type-theory-church/
• Church: A Formulation of the Simple Theory of Types (1940)

• Thorsten Altenkirch: Dependent types,
http://www.cs.nott.ac.uk/~psztxa/oplss-22/dependent.pdf

• https://plato.stanford.edu/entries/type-theory-intuitionistic

https://plato.stanford.edu/entries/type-theory-church/
http://www.cs.nott.ac.uk/~psztxa/oplss-22/dependent.pdf
https://plato.stanford.edu/entries/type-theory-intuitionistic


The lambda cube

Figure 1: Lambda cube

Tellofou, CC BY-SA 4.0
https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia
Commons

https://creativecommons.org/licenses/by-sa/4.0


Breakdown of lambda cube

• x-axis: types that can bind terms
• y-axis: terms that can bind types
• z-axis: types that can bind types

• 𝜆 →, simply typed lambda calculus
• 𝜆2, System F, “second order lambda calculus”
• 𝜆𝜔, System F𝜔, “types depend on types”
• 𝜆𝑃 , Lambda-P, “Logical Framework”
• 𝜆𝜔, System F𝜔, terms/types depend on types
• 𝜆𝐶, Calculus of Constructions, terms/types depend on

terms/types



Significance of lambda cube

• foundations for different languages and tools
• 𝜆2 (System F) for Haskell, Standard ML
• 𝜆𝐶 (Calculus of Constructions) for Coq, Idris

• expressive power vs. decidability and ease of implementation



Functional languages and logic

• lambda cube languages describe computable functions
• higher-order functions
• bool is a datatype
• reasoning happens outside language

• first-order logic describes (semi-decidable) formulas
• reasoning is the whole point
• encoding of some functions using signatures

• can we combine lambda functions and logic?



Simply typed lambda calculus as a logic
Types:

• 𝜄 is the type of individuals
• 𝑜 is the type of truth values (Booleans)
• if 𝛼 and 𝛽 are types, then 𝛼 → 𝛽 is a type

Primitive constants:
• ∼∶ 𝑜 → 𝑜 (negation)
• ∨ ∶ 𝑜 → (𝑜 → 𝑜) (disjunction)
• ∏ ∶ (𝛼 → 𝑜) → 𝑜 (for all)
• 𝜖 ∶ (𝛼 → 𝑜) → 𝛼 (choice)

Derived constants:
• 𝐴 ∧ 𝐵 is ∼ (∼ 𝐴 ∨ ∼ 𝐵)
• 𝐴 ⇒ 𝐵 is (∼ 𝐴) ∨ 𝐵
• ∀𝑥𝛼.𝐴𝑜 is ∏(𝜆𝑥𝛼𝐴𝑜)



Equality

• we can quantify over all predicates (one-place functions on 𝑜)
• this allows representing equality using the “Leibniz approach”
• we can also represent induction principles

Define 𝑄 as
𝜆𝑥𝛼.𝜆𝑦𝛼.∀𝑓𝛼→𝑜.𝑓 𝑥 ⇒ 𝑓 𝑦

Then define 𝐴𝛼 = 𝐵𝛼 as 𝑄 𝐴𝛼𝐵𝛼. What is the type of 𝑄?



Example

“Napoleon’s soldiers admire him”

(𝜆𝑛𝜄.∀𝑥𝜄.Soldier𝜄→𝑜 𝑥𝜄 ∧ CommanderOf𝜄→𝜄𝑥𝜄 = 𝑛𝜄
⇒ Admires𝜄→(𝜄→𝑜)𝑥𝜄𝑛𝜄)Napoleon𝜄



Axioms in the system

• Alpha-conversion: changing the names of bound variables
consistently.

• Beta-contraction: performing 𝜆-application-substitutions
inside terms.

• Beta-expansion: infer 𝐶 from 𝐷 if 𝐷 can be inferred from 𝐶
by one beta-contraction.

• Substitution: from 𝐹𝛼→𝑜 𝑥𝛼, infer 𝐹 𝐴𝛼 when 𝑥 not free in 𝐹
• Modus Ponens: from 𝐴𝑜 → 𝐵𝑜 and 𝐴𝑜, infer 𝐵𝑜
• Generalization: from 𝐹𝛼→𝑜 𝑥𝛼, infer ∀𝑥𝛼.𝐹𝑥𝛼 when 𝑥 not

free in 𝐹
• Boolean and function extensionality
• Choice: (∃𝑥𝛼.𝑃 𝑥) ⇒ 𝑃 (𝜖 𝑃)
• Axiom of infinity



Dependent types

• not allowing types to depend on terms means no type R^n of
vector spaces, for n : nat

• Calculus of Constructions lifts this restriction
• we assume

• a universe of types 𝑈
• a type 𝐴 ∶ 𝑈
• a family of types 𝐵 ∶ 𝐴 → 𝑈

• dependent functions: (𝑥 ∶ 𝐴) → 𝐵(𝑥), also ∏(𝑥 ∶ 𝐴)𝐵(𝑥)
• dependent sums: (𝑥 ∶ 𝐴) × 𝐵(𝑥), also ∑(𝑥 ∶ 𝐴)𝐵(𝑥)
• if 𝐵 does not depend on 𝑥, i.e., 𝐵(𝑥) = 𝐵 is constant:

• we get familiar 𝐴 → 𝐵
• we get familiar 𝐴 × 𝐵



Logical operations with dependent types

• 𝐴 ∧ 𝐵 reduces to 𝐴 × 𝐵 = (𝑥 ∶ 𝐴) × 𝐵
• 𝐴 ⇒ 𝐵 reduces to 𝐴 → 𝐵 = (𝑥 ∶ 𝐴) → 𝐵
• (∀𝑥 ∶ 𝐴)𝐵(𝑥) reduces to (𝑥 ∶ 𝐴) → 𝐵(𝑥)
• (∃𝑥 ∶ 𝐴)𝐵(𝑥) reduces to (𝑥 ∶ 𝐴) × 𝐵(𝑥)
• 𝐴 ∨ 𝐵 reduces to 𝐴 + 𝐵
• ∼ 𝐴 reduces to (𝑥 ∶ 𝐴) → ⊥, for empty type ⊥

How is this different from classical logic?



Example

∀𝑚 ∶ nat.∃𝑛 ∶ nat.𝑚 < 𝑛 ∧ Prime 𝑛

∏ 𝑚 ∶ nat. ∑ 𝑛 ∶ nat.𝑚 < 𝑛 × Prime 𝑛



Equality and dependent types

• not as straightforward as for simple types
• judgmental equality: normal forms of terms are identical
• can manually define identity relation directly for a type like

nat (“propositionally equal” nats)
• more promising approach: a general “identity type former”

• does not provide extensional equality (of functions)
• distinguishes propositional and judgmental equality

• extensional type theory: type checking becomes undecidable
• but extensional equality (of functions)
• conflates propositional and judgmental equality



Why logic inside a type theory?

• no separate metalanguage for reasoning
• basic tooling via implementation of type checker
• establish (near-arbitrary) properties of functions and data
• soundness of reasoning reduces to soundness of type theory

(rules)


