DD2552 Seminar 12: Advanced topics

Karl Palmskog
KTH

Wednesday October 11, 2023



Course material

® https://plato.stanford.edu/entries/type-theory-church/
® Church: A Formulation of the Simple Theory of Types (1940)

® Thorsten Altenkirch: Dependent types,
http://www.cs.nott.ac.uk /~psztxa/oplss-22 /dependent.pdf
® https://plato.stanford.edu/entries/type-theory-intuitionistic


https://plato.stanford.edu/entries/type-theory-church/
http://www.cs.nott.ac.uk/~psztxa/oplss-22/dependent.pdf
https://plato.stanford.edu/entries/type-theory-intuitionistic

The lambda cube

> AC
/ A
> AP2
A
- AP

i

» AP



https://creativecommons.org/licenses/by-sa/4.0

Breakdown of lambda cube

® x-axis: types that can bind terms
® y-axis: terms that can bind types

z-axis: types that can bind types

A —, simply typed lambda calculus

A2, System F, “second order lambda calculus”

Aw, System Fw, “types depend on types”

AP, Lambda-P, “Logical Framework"

Aw, System Fw, terms/types depend on types

AC, Calculus of Constructions, terms/types depend on
terms/types



Significance of lambda cube

® foundations for different languages and tools
® )2 (System F) for Haskell, Standard ML
® \C (Calculus of Constructions) for Coq, ldris

® expressive power vs. decidability and ease of implementation



Functional languages and logic

® |ambda cube languages describe computable functions
® higher-order functions
® bool is a datatype
® reasoning happens outside language
e first-order logic describes (semi-decidable) formulas
® reasoning is the whole point
® encoding of some functions using signatures
® can we combine lambda functions and logic?



Simply typed lambda calculus as a logic

Types:

® , is the type of individuals
® o is the type of truth values (Booleans)
® if o and 3 are types, then o — 3 is a type

Primitive constants:

~: 0 — 0 (negation)

V:0 — (0 — o) (disjunction)
[]: (= 0) — o (for all)

€: (o — 0) = a (choice)

Derived constants:
® ANBis~ (~ AV ~ B)
e A= Bis(~A) VB
o Vx,.A,is [[(Ax,A,)



Equality

® we can quantify over all predicates (one-place functions on 0)
® this allows representing equality using the “Leibniz approach”
® we can also represent induction principles
Define Q) as
AC o, ANYo YV oo f2 = [y

Then define A, = B, as Q A,B,. What is the type of Q?



Example

“Napoleon’s soldiers admire him"

(An,.Vz,.Soldier, ., x, A CommanderOf, ,,z, =n,

= Admires,_,(,_,,7,n,)Napoleon,



® Substitution: from F €T

Axioms in the system

Alpha-conversion: changing the names of bound variables
consistently.
Beta-contraction: performing A-application-substitutions
inside terms.
Beta-expansion: infer C' from D if D can be inferred from C
by one beta-contraction.

o Lo, infer FY A when z not free in F
® Modus Ponens: from A, — B, and A, infer B,
® Generalization: from F,_, =z, infer Vx,.Fx, when x not
free in F’
® Boolean and function extensionality
® Choice: (3z,.Px) = P (e P)
® Axiom of infinity



Dependent types

not allowing types to depend on terms means no type R™n of
vector spaces, forn : nat

® Calculus of Constructions lifts this restriction
® e assume

® a universe of types U

® atype A: U

® a family of types B: A —» U

e dependent functions: (z : A) — B(z), also [[(z : A)B(z)
® dependent sums: (z: A) x B(x), also > (z : A)B(x)

e if B does not depend on z, i.e., B(x) = B is constant:

® we get familiar A — B

® we get familiar A x B



Logical operations with dependent types

® ANBreducesto Ax B=(z:A)xB

® A= Breducessto A+ B=(z:A) — B

e (Vz: A)B(x) reduces to (z : A) — B(x)

® (Jz: A)B(x) reduces to (z : A) x B(x)

® AV B reducesto A+ B

® ~ A reduces to (z : A) — L, for empty type L

How is this different from classical logic?



Example

Vm :nat.9n : nat.m < n A Primen

Hm:nat.Zn:nat.m<n X Primen



Equality and dependent types

® not as straightforward as for simple types
® judgmental equality: normal forms of terms are identical
can manually define identity relation directly for a type like
nat (“propositionally equal” nats)
more promising approach: a general “identity type former”
® does not provide extensional equality (of functions)
® distinguishes propositional and judgmental equality
extensional type theory: type checking becomes undecidable
® but extensional equality (of functions)
® conflates propositional and judgmental equality



Why logic inside a type theory?

no separate metalanguage for reasoning

basic tooling via implementation of type checker

establish (near-arbitrary) properties of functions and data
soundness of reasoning reduces to soundness of type theory
(rules)



