
DD2552 Seminar 3: Simply Typed Lambda
Calculus and Beyond

Karl Palmskog

KTH

Wednesday September 6, 2023



Course material

• PFPL chapter 4
• Commentary in Software Foundations

• https://softwarefoundations.cis.upenn.edu/plf-
current/Stlc.html

• https://softwarefoundations.cis.upenn.edu/plf-
current/StlcProp.html

https://softwarefoundations.cis.upenn.edu/plf-current/Stlc.html
https://softwarefoundations.cis.upenn.edu/plf-current/Stlc.html
https://softwarefoundations.cis.upenn.edu/plf-current/StlcProp.html
https://softwarefoundations.cis.upenn.edu/plf-current/StlcProp.html


Why types?

• lack of restrictions in formal systems can lead to
contradictions (paradoxes)

• types can enforce enough discipline to rule out contradictions
• “set of all sets” vs. “class of all sets” vs. hierarchy of classes



Why Simply Typed Lambda Calculus?

• possibly simplest meaningful typesystem for lambda calculus
(add function types)

• showcases why we have (several) types in functional languages
• stepping stone to practical languages like CakeML
• usually abbreviated STLC



What is STLC?

• lambda calculus with a typing relation
• a basis for metatheory (safety and progress)
• benchmark for formal metatheory



Lambda Calculus syntax

t ∶∶= term
| x variable
| 𝜆x.t bind x in t lambda
| t t′ app
| (t) S
| [t/x]t′ M

v ∶∶= value
| 𝜆x.t lambda

typ, T ∶∶= types
| o base type
| T1 → T2 function types



Lambda Calculus reduction reminder

(𝜆x.t12) v2 ⟶ [v2/x]t12
red_ax_app

t1 ⟶ t′
1

t1 t ⟶ t′
1 t red_ctx_app_fun

t1 ⟶ t′
1

v t1 ⟶ v t′
1

red_ctx_app_arg



STLC typing relation

x ∶ T ∈ Γ
Γ ⊢ x ∶ T typing_var

Γ, x ∶ T1 ⊢ t ∶ T2
Γ ⊢ 𝜆x.t ∶ T1 → T2

typing_abs

Γ ⊢ t1 ∶ T1 → T2
Γ ⊢ t2 ∶ T1

Γ ⊢ t1 t2 ∶ T2
typing_app



STLC property: progress

Pierce et al.:
“closed, well-typed terms are not stuck: either a well-typed
term is a value, or it can take a reduction step.”

Theorem
For all terms 𝑡 and types 𝑇 , if • ⊢ 𝑡 ∶ 𝑇 , then 𝑡 is a value or there
exists 𝑡′ such that 𝑡 ⟶ 𝑡′.



STLC property: preservation

Pierce et al.:
if a closed, well-typed term 𝑡 has type 𝑇 and takes a step
to 𝑡′, then 𝑡′ is also a closed term with type 𝑇 . In other
words, the small-step reduction relation preserves types.

Theorem
For all terms 𝑡, 𝑡′ and types 𝑇 , if • ⊢ 𝑡 ∶ 𝑇 and 𝑡 ⟶ 𝑡′, then
• ⊢ 𝑡′ ∶ 𝑇 .



Instantiating STLC with booleans
t ∶∶= term

| x variable
| 𝜆x.t bind x in t lambda
| t t′ app
| if t then t′ else t″ conditional
| true true
| false false
| (t) S
| [t/x]t′ M

v ∶∶= value
| 𝜆x.t lambda

typ, T ∶∶= types
| Bool bool type
| T1 → T2 function types



Instantiating STLC with booleans

(𝜆x.t12) v2 ⟶ [v2/x]t12
red_ax_app

t1 ⟶ t′
1

t1 t ⟶ t′
1 t red_ctx_app_fun

t1 ⟶ t′
1

v t1 ⟶ v t′
1

red_ctx_app_arg

if true then t1 else t2 ⟶ t1
red_if_true

if false then t1 else t2 ⟶ t2
red_if_false

t1 ⟶ t′
1

if t1 then t2 else t3 ⟶ if t′
1 then t2 else t3

red_if



Instantiating STLC with booleans
x ∶ T ∈ Γ
Γ ⊢ x ∶ T typing_var

Γ, x ∶ T1 ⊢ t ∶ T2
Γ ⊢ 𝜆x.t ∶ T1 → T2

typing_abs

Γ ⊢ t1 ∶ T1 → T2
Γ ⊢ t2 ∶ T1

Γ ⊢ t1 t2 ∶ T2
typing_app

Γ ⊢ true ∶ Bool typing_true

Γ ⊢ false ∶ Bool typing_false

Γ ⊢ t1 ∶ Bool
Γ ⊢ t2 ∶ T1
Γ ⊢ t3 ∶ T1

Γ ⊢ if t1 then t2 else t3 ∶ T1
typing_if



Towards a more realistic language

• convenient to annotate types in programs
• we also need a datatype definition mechanism so

preservation/progress proofs do not need to change with every
new kind of data

• examples: OCaml Light, CakeML


