
DD2552 Seminar 5: From primitive to general
recursion

Karl Palmskog

KTH

Wednesday September 13, 2023



Course material

• PFPL chapter 15, (co)inductive data types
• PFPL chapter 19, recursive functions
• PFPL chapter 20, recursive types



Revisiting sum types: Booleans
T ∶∶=

| unit
| T + T′

e ∶∶=
| ⟨⟩
| l ⋅ e
| r ⋅ e

bool def== unit + unit

true def== l ⋅ ⟨⟩
false def== r ⋅ ⟨⟩



Revisiting sum types: options of Booleans
T ∶∶=

| unit
| T + T′

e ∶∶=
| ⟨⟩
| l ⋅ e
| r ⋅ e

option def== unit + bool

none def== l ⋅ ⟨⟩
some(𝑒) def== r ⋅ 𝑒

case 𝑒 {l ⋅ _⇝ 𝑒1 | 𝑟 ⋅ 𝑥2 ⇝ 𝑒2}



Inductive types and natural numbers
𝜏 ∶∶=

| t
| 𝜇 ( t .𝜏)
| 𝜈 ( t .𝜏)

nat def== 𝜇(𝑡.unit + 𝑡)
z def== fold(l ⋅ ⟨⟩)

s(𝑒) def== fold(r ⋅ 𝑒)

𝜇(𝑡.𝜏) ≅ [𝜇(𝑡.𝜏)/𝑡]𝜏
2 = fold(r ⋅ fold(r ⋅ fold(l ⋅ ⟨⟩)))



Natural number recursor/iterator
𝜏 ∶∶=

| t
| 𝜇 ( t .𝜏)
| 𝜈 ( t .𝜏)

𝑒 ∶∶=
| fold (𝑒)
| rec (x.𝑒1; 𝑒2)
| [𝑒1/x]𝑒2 M

rec(𝑥.𝑒1; fold(𝑒2)) ⟶
[case 𝑒2 {l ⋅ _⇝ l ⋅ ⟨⟩ | 𝑟 ⋅ 𝑦 ⇝ 𝑟 ⋅ rec(𝑥.𝑒1; 𝑦)}/𝑥]𝑒1



Structural recursion and termination

• rec-fold expressions are guaranteed to terminate
• the recursion is structural: bounded structure means

bounded number of recursive calls
• this prevents expressing some interesting functions directly



General recursion and functionals

Consider a mathematically defined function:
• 𝑓(0) = 1
• 𝑓(𝑛 + 1) = (𝑛 + 1) × 𝑓(𝑛)

Define the functional 𝐹 by 𝐹(𝑓) = 𝑓 ′ where
• 𝑓 ′(𝑛) = 1 if 𝑛 = 0
• 𝑓 ′(𝑛) = 𝑛 × 𝑓(𝑛′) if 𝑛 = 𝑛′ + 1

We want a fixpoint (fixed point) 𝑔 of 𝐹 , such that 𝑔 = 𝐹(𝑔).



Totality and partiality

• “all” systems of equations have fixpoints
• no guarantee that the fixpoint function is total (may diverge)
• we can prove termination on all of specific inputs



Classes of functions

• primitive recursive functions
• partial recursive functions (PCF) are strictly larger
• classic example: Ackermann function

𝐴(0, 𝑛) = 𝑛 + 1
𝐴(𝑚 + 1, 0) = 𝐴(𝑚, 1)

𝐴(𝑚 + 1, 𝑛 + 1) = 𝐴(𝑚, 𝐴(𝑚 + 1, 𝑛))



Example function on pairs of nat

gcd (a, b) :=
| a = 0 => 0
| b = 0 => 0
| a = b => a
| a < b => gcd (a, b-a)
| a > b => gcd (a-b, b)

How do we know it terminates?



Measures

gcd (a, b) :=
| a = 0 => 0
| b = 0 => 0
| a = b => a
| a < b => gcd (a, b-a)
| a > b => gcd (a-b, b)

• we associate a measure with each step (recursive call)
• proposed measure: fst ab + snd ab



Measure induces relation

gcd (a, b) :=
| a = 0 => 0
| b = 0 => 0
| a = b => a
| a < b => gcd (a, b-a)
| a > b => gcd (a-b, b)

• we compare measure for input and recursive calls
• measure must decrease with every call


