DD2552 Seminar 5: From primitive to general
recursion

Karl Palmskog
KTH

Wednesday September 13, 2023



Course material

® PFPL chapter 15, (co)inductive data types
® PFPL chapter 19, recursive functions
® PFPL chapter 20, recursive types



Revisiting sum types

unit

T+ T

—~
-

<~
a ©

def . .
bool == unit + unit

true <L . ()

false 2L 1. ()

- Booleans



Revisiting sum types: options of Booleans

unit
T+ T

—~
>

<~
o O

. odef .
option == unit + bool

none <L /. ()
some(e) & e

casee{l- _~e |12y~ ey}



Inductive types and natural numbers

nat = w(t.unit + t)
2 2L fold(1- ()

s(e) =L fold(r- e)

p(t.r) = [p(t.r) /M)
2 = fold(r- fold(r- fold(I- ())))



Natural number recursor /iterator

i
~

fold (e)
rec (z.eq; €5)
ey /a]e, M

rec(z.eq; fold(ey)) —

[caseeg {l- _~>1- () |r -y~ 1-rec(xz.eq;y)}/x]e;



Structural recursion and termination

® rec-fold expressions are guaranteed to terminate

® the recursion is structural: bounded structure means
bounded number of recursive calls

® this prevents expressing some interesting functions directly



General recursion and functionals

Consider a mathematically defined function:

. £(0) =1
e f(n+1)=(n+1)x f(n)

Define the functional F' by F'(f) = f’ where

e ffln)=1ifn=0
e f/(n)=nxf(n)ifn=n"+1

We want a fixpoint (fixed point) g of F', such that g = F(g).



Totality and partiality

® “3|I" systems of equations have fixpoints
® no guarantee that the fixpoint function is total (may diverge)
® we can prove termination on all of specific inputs



Classes of functions

® primitive recursive functions
® partial recursive functions (PCF) are strictly larger
® classic example: Ackermann function

A(0,n) =n+1
A(m +1,0) = A(m, 1)
Am+1,n+1) = A(m,A(m + 1,n))



Example function on pairs of nat

ged (a, b) :=
| a=0=>0
| b=0=>0
| a=b=>a
| a < b =>gcd (a, b-a)
| a2 >b =>gcd (a-b, b)

How do we know it terminates?



Measures

gecd (a, b) :=
| a=0=>0
| b=0=>0
| a=b=>a
| a < b =>gcd (a, b-a)
| a > b =>gecd (a-b, b)

® we associate a measure with each step (recursive call)
® proposed measure: fst ab + snd ab



Measure induces relation

ged (a, b) :=
| a=0=>0
| b=0=>0
| a=b=>a
| a < b =>gcd (a, b-a)
| a > b =>gcd (a-b, b)

® we compare measure for input and recursive calls
® measure must decrease with every call



