DD2552 Seminar 6: Proving properties of
functions

Karl Palmskog
KTH

Thursday September 14, 2023



Course material

® “Some notes on structural induction”
(https://www.cs.cmu.edu/~me/courses/15-150-
Spring2020/lectures/04 /structural.pdf)

® “Proving properties of programs by structural induction” by
Burstall, 1968


https://www.cs.cmu.edu/~me/courses/15-150-Spring2020/lectures/04/structural.pdf
https://www.cs.cmu.edu/~me/courses/15-150-Spring2020/lectures/04/structural.pdf

Premises for this seminar

® we assume data is inductive (not coinductive)

we assume recursive functions are least fixpoints (not
greatest)

we get Harper's System FPC with eager dynamics
this is close to Standard ML, OCaml or CakeML



Reminder on ensuring function termination

® come up with measure on function input (arguments)
® define relation over two measures

® prove relation has no infinitely descending chains (is
wellfounded)

show that measure decreases in all recursive calls



Proving other properties than termination

® functions are defined recursively on structure of data

® use induction on structure of data to prove properties

® we get one case for each “data constructor” and hypotheses
for subterms



Proving equalities

® many interesting properties are equalities
® thanks to confluence, we can substitute terms for reduced
terms
we can also reason in “point-free” style
® no function arguments in the way
® would need to assume extensional equality

hypothesis: substituting equals-for-equals is the core property
that makes reasoning about pure/stateless functions feasible
and practical



Appending lists of integers in CakeML

datatype list = Nil | Cons int list

fun app 11 12
case 11 of

Nil => 12

| Cons a 111 => Cons a (app 111 12)

Property:
app (app 11 12) 13 = app 11 (app 12 13)



Reversing lists of integers in CakeML

fun reverse 11 =
case 11 of
Nil => Nil
| Cons a 111 => app (reverse 111) (Cons a Nil)

fun rev_aux 11 12 =
case 11 of
Nil => 12
| Cons a 111 => rev_aux 111 (Cons a 12)

fun rev 11 = rev_aux 11 Nil



Simpler functions as specifications

® we can use reverse as specification of what list reversal
means

® we can view rev as a proposed optimization
® prove for all 1 that reverse 1 = rev 1



Functional depth-first search

Fixpoint dfs n v x :=
if x \in v then v else
if n is n'.+1 then foldl (dfs n') (x :: v) (g x) else v.



Functional merge sort

Fixpoint merge sl :=
if s1 is x1 :: s1' then
let fix merge_sl s2 :=
if s2 is x2 :: s2' then
if 1leT x1 x2 then
x1 :: merge sl1' s2
else x2 :: merge_sl s2'
else sl in merge_sli
else id.

Fixpoint merge_sort_push sl ss :=
match ss with

| [::1 :: ss'
| [::] as ss' => s1 :: ss'
| s2 :: ss' => [::] :: merge_sort_push (merge s2 sl)

end.

ss'



Merge sort, continued

Fixpoint merge_sort_pop sl ss :=
if ss is s2 :: ss' then
merge_sort_pop (merge s2 s1) ss' else sl.

Fixpoint merge_sort_rec ss s :=
if s is [:: x1, x2 & s'] then

let sl :=
if 1eT x1 x2 then
[:: x1; x2]
else [:: x2; x1]
in

merge_sort_rec (merge_sort_push sl ss) s'
else merge_sort_pop s ss.

Definition sort := merge_sort_rec [::].



