
DD2552 Seminar 6: Proving properties of
functions

Karl Palmskog

KTH

Thursday September 14, 2023



Course material

• “Some notes on structural induction”
(https://www.cs.cmu.edu/~me/courses/15-150-
Spring2020/lectures/04/structural.pdf)

• “Proving properties of programs by structural induction” by
Burstall, 1968

https://www.cs.cmu.edu/~me/courses/15-150-Spring2020/lectures/04/structural.pdf
https://www.cs.cmu.edu/~me/courses/15-150-Spring2020/lectures/04/structural.pdf


Premises for this seminar

• we assume data is inductive (not coinductive)
• we assume recursive functions are least fixpoints (not

greatest)
• we get Harper’s System FPC with eager dynamics
• this is close to Standard ML, OCaml or CakeML



Reminder on ensuring function termination

• come up with measure on function input (arguments)
• define relation over two measures
• prove relation has no infinitely descending chains (is

wellfounded)
• show that measure decreases in all recursive calls



Proving other properties than termination

• functions are defined recursively on structure of data
• use induction on structure of data to prove properties
• we get one case for each “data constructor” and hypotheses

for subterms



Proving equalities

• many interesting properties are equalities
• thanks to confluence, we can substitute terms for reduced

terms
• we can also reason in “point-free” style

• no function arguments in the way
• would need to assume extensional equality

• hypothesis: substituting equals-for-equals is the core property
that makes reasoning about pure/stateless functions feasible
and practical



Appending lists of integers in CakeML

datatype list = Nil | Cons int list

fun app l1 l2 =
case l1 of

Nil => l2
| Cons a l11 => Cons a (app l11 l2)

Property:

app (app l1 l2) l3 = app l1 (app l2 l3)



Reversing lists of integers in CakeML

fun reverse l1 =
case l1 of

Nil => Nil
| Cons a l11 => app (reverse l11) (Cons a Nil)

fun rev_aux l1 l2 =
case l1 of

Nil => l2
| Cons a l11 => rev_aux l11 (Cons a l2)

fun rev l1 = rev_aux l1 Nil



Simpler functions as specifications

• we can use reverse as specification of what list reversal
means

• we can view rev as a proposed optimization
• prove for all l that reverse l = rev l



Functional depth-first search

Fixpoint dfs n v x :=
if x \in v then v else
if n is n'.+1 then foldl (dfs n') (x :: v) (g x) else v.



Functional merge sort
Fixpoint merge s1 :=
if s1 is x1 :: s1' then

let fix merge_s1 s2 :=
if s2 is x2 :: s2' then

if leT x1 x2 then
x1 :: merge s1' s2

else x2 :: merge_s1 s2'
else s1 in merge_s1

else id.

Fixpoint merge_sort_push s1 ss :=
match ss with
| [::] :: ss'
| [::] as ss' => s1 :: ss'
| s2 :: ss' => [::] :: merge_sort_push (merge s2 s1) ss'
end.



Merge sort, continued

Fixpoint merge_sort_pop s1 ss :=
if ss is s2 :: ss' then
merge_sort_pop (merge s2 s1) ss' else s1.

Fixpoint merge_sort_rec ss s :=
if s is [:: x1, x2 & s'] then

let s1 :=
if leT x1 x2 then
[:: x1; x2]

else [:: x2; x1]
in
merge_sort_rec (merge_sort_push s1 ss) s'

else merge_sort_pop s ss.

Definition sort := merge_sort_rec [::].


