
DD2552 Seminar 8: Abstract types

Karl Palmskog

KTH

Thursday September 21, 2023



Course material

• PFPL Chapter 17
• CakeML example of abstracted queue implemented with two

lists
• Bonus reading, “On Understanding Data Abstraction,

Revisited”,
https://www.cs.utexas.edu/~wcook/Drafts/2009/essay.pdf

https://www.cs.utexas.edu/~wcook/Drafts/2009/essay.pdf


Data abstraction

• interfaces are a form of agreement between implementor and
client of a program

• interfaces should isolate the client from the implementor
• a compliant implementation should be replacable by another

by the client without affecting (functional) behavior



Abstract types

• abstract types are existential types, we have no knowledge
about their representation

• we define collections of operations on the unspecified type
• two mechanisms:

• information hiding (for client)
• compliance checking (for implementor)

• example from last seminar: unspecified finite map datatype
with operations add, remove, find, mem



Harper’s queue of natural numbers

consider an abstract type of FIFO queues supporting three
operations:

• forming the empty queue (emp)
• inserting a natural number at the end of the queue (ins)
• removing the natural number at the head of the queue (rem)



Type signatures

• by convention, the existential type is called t
• form empty: emp : t
• insertion: ins : nat*t -> t
• removal: rem : t -> (nat*t) option
• the existential type is formed by product of all operation types



Packing and opening existential types

• expressions of type ∃(𝑡.𝜏) are “packages” of form
pack 𝜌 with 𝑒 as ∃(𝑡.𝜏)

• 𝜌 is a type (“representation type”)
• 𝑒 is expression of type [𝜌/𝑡]𝜏 (“implementation”)

• to use a package, use elimination form
open 𝑒1 as 𝑡 with 𝑥 ∶ 𝜏 in 𝑒2• 𝑒1 is expression of type ∃(𝑡.𝜏)

• 𝑒2 is the “client expression” with some type 𝜏2, may
implement a sequence of operations via 𝑥



Existential types in CakeML

• declare a structure (namespace)
• open a local .. in .. block inside structure
• first declare type and all operations, including auxiliary

functions
• then declare interface operations
• implementation (including type) is hidden, but swapping

implementations cumbersome
• see example code in supplementary material
• need full module system (signatures) for convenient

implementation swapping



Existential types in OCaml, imperative

type 'a t
(* The type of stacks containing elements of type ['a]. *)

val create : unit -> 'a t
(* Return a new stack, initially empty. *)

val push : 'a -> 'a t -> unit
(* [push x s] adds the element [x] at the
top of stack [s]. *)

val pop : 'a t -> 'a
(* [pop s] removes and returns the topmost element

in stack [s], or throws an exception. *)



Existential types in OCaml, pure

type 'a t
(* The type of stacks containing elements of type ['a]. *)

val create : 'a t
(* Return an empty stack. *)

val push : 'a -> 'a t -> 'a t
(* [push x s] returns the stack that has [x] at the
top of stack [s]. *)

val pop_opt : 'a t -> ('a * 'a t) option
(* [pop_opt s] returns the topmost element in

[s] and [s] with element removed, or [None]
if stack is empty. *)



Representation independence

• should be possible to ensure clients are unaffected by
swapping implementations of the same abstract type

• Harper proposes concept of bisimilarity to formalize
“unaffected”

• informally, implementations are bisimilar when observers
(clients) can’t tell them apart by interacting with them



Bisimulation proof method

• to prove correctness of a candidate implementation of
abstract type, show that it is bisimilar to an obviously correct
reference implementation

• similar to using a “functional model” in contracts
• if proof succeeds, no client can distinguish if they are using

reference implementation or candidate
• typically assume resource use (time, memory, etc.) is not

observable
• security properties also may not be preserved



Bisimulation proof setup

• reference implementation of queue (e.g., using single list):
• emp: 𝑒𝑚• ins: 𝑒𝑖• del: 𝑒𝑟

• candidate implementation of queue (e.g., using two lists):
• emp: 𝑒′

𝑚• ins: 𝑒′
𝑖• del: 𝑒′
𝑟

• find binary relation 𝑅 between expressions from reference and
candidate implementations

• empty queues should be related
• inserting same element into related queues should yield related

queues
• deleting same element from related queues should yield related

expressions


