DD2552 Seminar 8: Abstract types

Karl Palmskog
KTH

Thursday September 21, 2023



Course material

e PFPL Chapter 17

® CakeML example of abstracted queue implemented with two
lists

® Bonus reading, “On Understanding Data Abstraction,
Revisited”,
https://www.cs.utexas.edu/~wcook/Drafts /2009 /essay.pdf


https://www.cs.utexas.edu/~wcook/Drafts/2009/essay.pdf

Data abstraction

® interfaces are a form of agreement between implementor and
client of a program

® interfaces should isolate the client from the implementor

® 3 compliant implementation should be replacable by another
by the client without affecting (functional) behavior



Abstract types

abstract types are existential types, we have no knowledge
about their representation
® we define collections of operations on the unspecified type

® two mechanisms:

® information hiding (for client)
® compliance checking (for implementor)

example from last seminar: unspecified finite map datatype
with operations add, remove, find, mem



Harper's queue of natural numbers

consider an abstract type of FIFO queues supporting three
operations:

e forming the empty queue (emp)
® inserting a natural number at the end of the queue (ins)
® removing the natural number at the head of the queue (rem)



Type signatures

by convention, the existential type is called t

form empty: emp : t

insertion: ins : nat*t -> t

removal: rem : t -> (nat*t) option

the existential type is formed by product of all operation types



Packing and opening existential types

® expressions of type 3(t.7) are “packages” of form
pack p with e as 3(t.7)
® pis a type (“representation type")
® ¢ is expression of type [p/t|T (“implementation”)
® to use a package, use elimination form
opene; astwithz : Tine,
® ¢, is expression of type 3(¢.7)
® ¢, is the “client expression” with some type 75, may
implement a sequence of operations via x



Existential types in CakeML

® declare a structure (namespace)

® open a local .. in .. block inside structure

e first declare type and all operations, including auxiliary
functions

® then declare interface operations

® implementation (including type) is hidden, but swapping
implementations cumbersome

® see example code in supplementary material

® need full module system (signatures) for convenient
implementation swapping



Existential types in OCaml, imperative

type 'a t

(* The type of stacks containing elements of type ['al.

val create : unit -> 'a t
(* Return a new stack, initially empty. *)

val push : 'a -> 'a t -> unit
(* [push x s] adds the element [x] at the
top of stack [s]. *)

val pop : 'at -> 'a
(* [pop s] removes and returns the topmost element
in stack [s], or throws an exception. *)

*)



Existential types in OCaml, pure

type 'a t

(* The type of stacks containing elements of type ['al.

val create : 'a t
(* Return an empty stack. *)

val push : 'a -> 'at -> 'a t
(* [push x s] returns the stack that has [x] at the
top of stack [s]. *)

val pop_opt : 'at -> ('a * 'a t) option

(*x [pop_opt s] returns the topmost element in
[s] and [s] with element removed, or [None]
if stack is empty. *)



Representation independence

® should be possible to ensure clients are unaffected by
swapping implementations of the same abstract type

® Harper proposes concept of bisimilarity to formalize
“unaffected”

® informally, implementations are bisimilar when observers
(clients) can't tell them apart by interacting with them



Bisimulation proof method

® to prove correctness of a candidate implementation of
abstract type, show that it is bisimilar to an obviously correct
reference implementation

® similar to using a “functional model” in contracts

® if proof succeeds, no client can distinguish if they are using
reference implementation or candidate

® typically assume resource use (time, memory, etc.) is not
observable

® security properties also may not be preserved



Bisimulation proof setup

e reference implementation of queue (e.g., using single list):

emp: e,
ins: ¢e;
del: e,

e candidate implementation of queue (e.g., using two lists):

. 4
emp: e,
ins: e

L
del: e,

¢ find binary relation R between expressions from reference and
candidate implementations

empty queues should be related

inserting same element into related queues should yield related
queues

deleting same element from related queues should yield related
expressions



