
DD2552 Seminar 9: Module types and
typeclasses

Karl Palmskog

KTH

Wednesday September 27, 2023



Course material

• PFPL chapter 44
• papers to be presented(?) on Standard ML module system,

typeclasses
• MacQueen, Wadler, et al.



Homework 1 aftermath

• reference solutions coming up later this week
• aim for grading to be done by early next week
• too easy, too challenging, useful?

• feedback welcome
• also in course evaluation



Paper presentations

• one week to go, please flag up paper ASAP
• 10-15 minutes per student, followed by at least a few minutes

of questions
• if using slides, good to aim for at most 1 slide per minute of

talk
• paper need not be presented in full

• fine to focus on some idea or even some example
• showing code snippets often helpful



Modules

• data and functions are programming in the small
• small pieces of functionality
• small building blocks of data

• modules (and typeclasses) are about programming in the large
• “separable and reusable components”
• large utility libraries intended for reuse
• large-scale software system construction

• modules can be open or sealed



Example: SML queue module type

signature QUEUE = sig
type 'a Queue
val empty : 'a Queue
val isEmpty : 'a Queue -> bool
val snoc : 'a Queue * 'a -> 'a Queue
val head : 'a Queue -> 'a
val tail : 'a Queue -> 'a Queue

end



Example: SML ordered module type

signature ORDERED = sig
type T
val eq : T * T -> bool
val lt : T * T -> bool
val leq : T * T -> bool

end

structure IntOrd : ORDERED = struct
type T = int
val eq = (=)
val lt = (<)
val leq = (<=)

end



Example: SML sortable signature

signature SORTABLE = sig
structure Elem : ORDERED
type Sortable
val empty : Sortable
val add : Elem.T * Sortable -> Sortable
val sort : Sortable -> Elem.T list

end



Example: Haskell sortable typeclass

class Sortable s where
empty :: s a
add :: Ord a => a -> s a -> s a
sort :: Ord a => s a -> [a]

instance Sortable T.RBTree where
empty = T.empty
add = T.insert
sort = T.toList



Example: SML heap module type

signature HEAP = sig
structure Elem : ORDERED
type Heap
val empty : Heap
val isEmpty : Heap -> bool
val insert : Elem.T * Heap -> Heap
val merge : Heap * Heap -> Heap
val findMin : Heap -> Elem.T
val deleteMin : Heap -> Heap

end



Example: Haskell heap typeclass

class Heap h where
empty :: Ord a => h a
isEmpty :: Ord a => h a -> Bool
insert :: Ord a => a -> h a -> h a
merge :: Ord a => h a -> h a -> h a
findMin :: Ord a => h a -> a
deleteMin :: Ord a => h a -> h a



Example: SML functor

functor SizedHeap (H : HEAP) : HEAP = struct
structure Elem = H.Elem
datatype Heap = NE of int * H.Heap
val empty = NE (0, H.empty)
fun isEmpty NE (n, h) = (n = 0)
fun insert (x, NE (n, h)) =
NE (n + 1, H.insert (x, h))
fun merge (NE (n1, h1), NE (n2, h2)) =
NE (n1 + n2, H.merge (h1, h2))
fun findMin NE (n, h) = H.findMin h
fun deleteMin NE (n, h) =
NE (n - 1, H.deleteMin h)

end



Example : SML functor

functor QueueWithCons (Q : QUEUE) : QUEUE = struct
type 'a Queue = 'a list * 'a Q.Queue
val empty = ([], Q.empty)
fun isEmpty ([], q) = Q.isEmpty q | isEmpty _ = false
fun cons (x, (xs, q)) = (x::xs, q)
fun snoc ((xs, q), x) = (h, Q.snoc (q, x))
fun head ([], q) = Q.head q
| head (x::xs, q) = x

fun tail ([], q) = Q.tail q
| tail (x::xs, q) = (xs, q)

end



A. Rossberg on SML modules

“ML is two languages in one: there is the core, with types
and expressions, and there are modules, with signatures,
structures and functors.”

“Modules form a separate, higher-order functional lan-
guage on top of the core. There are both practical and
technical reasons for this stratification; yet, it creates sub-
stantial duplication in syntax and semantics, and it reduces
expressiveness. For example, selecting a module cannot be
made a dynamic decision.”

https://people.mpi-sws.org/~rossberg/1ml/

https://people.mpi-sws.org/~rossberg/1ml/


First- and second-class modules

• are module definitions just expressions?
• first-class module values can depend on runtime

• can be convenient when passing options via command line
• see OCaml

• second-class module values are statically determined
• reasoning and type checking much easier
• chosen for Standard ML



Module-based libraries in production

• Standard ML Basis library (pioneer)
• OCaml Stdlib
• Jane Street Core for OCaml (industrial)
• CakeML Basis library (verified)


