This document is available under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license: http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the "Interactive Theorem Proving Course" by Thomas Tuerk (https://www.thomas-tuerk.de): https://github.com/thtuerk/ITP-course

This document includes additions by:

- Pablo Buiras (https://people.kth.se/~buiras/)
- Karl Palmskog (https://setoid.com)

Interactive Theorem Proving and Program Verification Lecture 6

Pablo Buiras and Karl Palmskog

Academic Year 2019/20, Period 3-4

Based on slides by Thomas Tuerk

Part XIII

Rewriting

Rewriting in HOL4

- simplification via rewriting was already a strength of Edinburgh LCF
- it was further improved for Cambridge LCF
- HOL4 inherited this powerful rewriter
- equational reasoning is still the main workhorse
- there are many different equational reasoning tools in HOL4
- Rewrite library inherited from Cambridge LCF you have seen it in the form of REWRITE_TAC
- computeLib - fast evaluation build for speed, optimised for ground terms seen in the form of EVAL
- simpLib - Simplification sophisticated rewrite engine, HOL4's main workhorse not discussed in this lecture, yet
- ...

Semantic Foundations

- we have seen primitive inference rules for equality before

$$
\begin{array}{cc}
\Gamma \vdash s=t & \\
\Delta \vdash u=v & \Gamma \vdash s=t \\
\quad \text { types fit }
\end{array} \quad \mathrm{COMB} \quad \begin{aligned}
& \Gamma \vdash \text { not free in } \Gamma \\
& \hline \Gamma \cup \Delta \vdash s(u)=t(v) \\
& \\
& \Gamma \vdash s=t \\
& \frac{\Delta \vdash t=u}{\Gamma \cup \Delta \vdash s=u} \text { TRANS }
\end{aligned}
$$

- these rules allow us to replace any subterm with an equal one
- this is the core of rewriting

Conversions

- in HOL4, equality reasoning is implemented by conversions
- a conversion is a SML function of type term -> thm
- given a term t , a conversion
- produces a theorem of the form $1-\mathrm{t}=\mathrm{t}$,
- raises an UNCHANGED exception or
- fails, i.e. raises an HOL_ERR exception

```
Example
> BETA_CONV '،(\x. SUC x) y'،
val it = 1- (\x. SUC x) y = SUC y
> BETA_CONV ''SUC y'`
Exception-HOL_ERR ... raised
> REPEATC BETA_CONV ''SUC y'`
Exception- UNCHANGED raised
```


Conversionals

- similar to tactics and tacticals there are conversionals for conversions
- conversionals allow building conversions from simpler ones
- there are many of them
- THENC
- ORELSEC
- REPEATC
- TRY_CONV
- RAND_CONV
- RATOR_CONV
- ABS_CONV
- . .

Depth Conversionals

- for rewriting depth-conversionals are important
- a depth-conversional applies a conversion to all subterms
- there are many different ones
- ONCE_DEPTH_CONV c - top down, applies c once at highest possible positions in distinct subterms
- TOP_SWEEP_CONV c - top down, like ONCE DEPTH_CONV, but continues processing rewritten terms
- TOP_DEPTH_CONV c - top down, like TOP_SWEEP_CONV, but try top-level again after change
- DEPTH_CONV c - bottom up, recurse over subterms, then apply c repeatedly at top-level
- REDEPTH_CONV c - bottom up, like DEPTH_CONV, but revisits subterms

REWR_CONV

- it remains to rewrite terms at top-level
- this is achieved by REWR_CONV
- given a term t and a theorem |- $\mathrm{t} 1=\mathrm{t} 2$, REWR_CONV t thm
- searches an instantiation of term and type variables such that t1 becomes α-equivalent to t
- fails, if no instantiation is found
- otherwise, instantiate the theorem and get |- t1' = t2'
- return theorem $1-\mathrm{t}=\mathrm{t} 2^{\prime}$

```
Example
term LENGTH [1;2;3], theorem |- LENGTH ((x:'a)::xs) = SUC (LENGTH xs)
found type instantiation: ['':'a"' |-> '':num'']
found term instantiation: [''x:num'' |-> ''1''; ''xs'' |-> ''[2;3]'']
returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])
```

- the tricky part is finding the instantiation
- this problem is called the (term) matching problem

Term Matching

- given term t_org and a term t_goal try to find
- type substitution ρ
- term substitution σ
- such that subst σ (inst ρ t_org) \equiv_{α} t_goal
- this can be easily implemented by a recursive search

t_org	t_goal	action
t1_org t2_org	t1_goal t2_goal	recurse
t1_org t2_org	otherwise	fail
lx. t_org x	\y. t_goal y	match types of x, y and recurse
\x. t_org x	otherwise	fail
const	same const	match types
const	otherwise	fail
var	anything	try to bind var,
		take care of existing bindings

Examples Term Matching

t_org	t_goal	substs
LENGTH ($\mathrm{x}:$ 'a): : xs)	LENGTH [1;2;3]	${ }^{\prime} \mathrm{a} \rightarrow$ num, $\mathrm{x} \rightarrow$ 1, xs \rightarrow [2;3]
[]:'a list	[]:'b list	' $\mathrm{a} \rightarrow$ ' b
0	0	empty substitution
$\mathrm{b} /$ T	($\mathrm{P}(\mathrm{x}:$ 'a) $==>\mathrm{Q}$) / T	$\mathrm{b} \rightarrow \mathrm{P} \mathrm{x}==>\mathrm{Q}$
$\mathrm{b} /$ b	$P \mathrm{x} /$ P P	$\mathrm{b} \rightarrow \mathrm{P} \mathrm{x}$
$\mathrm{b} /$ b	$P \mathrm{x} /$ P P	fail
!x:num. $\mathrm{P} x /$ Q x	!y:num. P' y / Q Q y	$\mathrm{P} \rightarrow \mathrm{P}^{\prime}, \mathrm{Q} \rightarrow \mathrm{Q}^{\prime}$
! x : num. $\mathrm{P} x /$ Q x	!y. (2 = y) / Q ${ }^{\prime}$ y	$P \rightarrow(\$=2), Q \rightarrow Q^{\prime}$
!x:num. $\mathrm{P} x / \backslash \mathrm{Q} x$!y. (y = 2) / Q ${ }^{\prime}$ ' y	fail

- it is often very annoying that the last match in the list above fails
- it prevents us from rewriting !y. (2 = y) $\backslash \mathrm{Q}$ y to (!y. (2=y)) / (!y. Q y)
- Can we do better? Yes, with higher order (term) matching.

Higher Order Term Matching

- term matching searches for a substitution $\langle\sigma, \rho\rangle$ such that subst σ (inst ρ t_org) is α-equivalent to t_goal
- higher order term matching searches for a substitution $\langle\sigma, \rho\rangle$ such that subst σ (inst ρ t_org) and t _goal have α-equivalent $\beta \eta$-normal forms, i.e.
if $\mathrm{t}_{\text {_subst }}=$ subst σ (inst ρ t_org), then
t_subst $\downarrow_{\beta \eta} v_{1} \wedge \mathrm{t}_{\text {_goal }} \downarrow_{\beta \eta} v_{2} \Rightarrow v_{1} \equiv{ }_{\alpha} v_{2}$
higher order term matching is aware of the semantics of λ
β-reduction $\quad(\lambda x . f) y=f[y / x]$
η-conversion $(\lambda x . f x)=f$ where x is not free in f

Higher Order Term Matching II

- the HOL4 implementation expects t_org to be a higher-order pattern
- t_org is in β-normal form
- if X a is to be instantiated, then all occurrences of the bound variables in a have to appear in a subterm matching a
- for other forms of t_org, HOL4's implementation might fail
- higher order matching is used by HO_REWR_CONV

Examples Higher Order Term Matching

t_org
!x:num. $P x / \backslash Q x$
$!x . P x / \backslash Q x$
$!x . P x / \backslash Q$
$!x . P(x, x)$
$!x . P(x, x)$

```
t_goal
!y. (y = 2) /\ Q' y
!x. P x /\ Q x /\ Z x
!x. P x /\Q x
!x. Q x
!x. Q x
!x. \(\operatorname{FST}(x, x)=\operatorname{SND}(x, x)\)
```

substs
$P \rightarrow(\backslash y, \quad y=2), Q \rightarrow Q^{\prime}$
fails
fails
$P \rightarrow \backslash x x . \operatorname{FST} x x=\operatorname{SND} x x$

Rewrite Library

- the rewrite library combines REWR_CONV with depth conversions
- there are many different conversions, rules and tactics
- at their core, they all work very similarly
- given a list of theorems, a set of rewrite theorems is derived
* split conjunctions
\star remove outermost universal quantification
\star introduce equations by adding $=T(o r=F)$ if needed
- REWR_CONV is applied to all the resulting rewrite theorems
- a depth-conversion is used with resulting conversion
- for performance reasons an efficient indexing structure is used
- by default implicit rewrites are added

Rewrite Library II

- REWRITE_CONV
- REWRITE_RULE
- REWRITE_TAC
- ASM_REWRITE_TAC
- ONCE_REWRITE_TAC
- PURE_REWRITE_TAC
- PURE_ONCE_REWRITE_TAC
- ...

Ho_Rewrite Library

- similar to Rewrite lib, but uses higher order matching
- internally uses HO_REWR_CONV
- similar conversions, rules and tactics as Rewrite lib
- Ho_Rewrite.REWRITE_CONV
- Ho_Rewrite.REWRITE_RULE
- Ho_Rewrite.REWRITE_TAC
- Ho_Rewrite.ASM_REWRITE_TAC
- Ho_Rewrite.ONCE_REWRITE_TAC
- Ho_Rewrite.PURE_REWRITE_TAC
- Ho_Rewrite.PURE_ONCE_REWRITE_TAC
- ...

Examples Rewrite and Ho_Rewrite Library

```
> REWRITE_CONV [LENGTH] ''LENGTH [1;2]'،
val it = |- LENGTH [1; 2] = SUC (SUC 0)
> ONCE_REWRITE_CONV [LENGTH] ''LENGTH [1;2]"'
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])
> REWRITE_CONV [] ''A /\ A /\ ~A"،
Exception- UNCHANGED raised
> PURE_REWRITE_CONV [NOT_AND] ''A /\ A /\ ~A"'
val it = |- A \\ A \ ~A => A \ F
> REWRITE_CONV [NOT_AND] ''A /\ A /\ ~A"
val it = |- A \\ A \ ~A <=> F
> REWRITE_CONV [FORALL_AND_THM] '`!x. P x /\ Q x /\ R x"`
Exception- UNCHANGED raised
> Ho_Rewrite.REWRITE_CONV [FORALL_AND_THM] '`!x. P x /\ Q x /\ R x"`
val it = |- !x. P x \\Q x \ R x <> (!x. P x) /\ (!x. Q x) /\ (!x. R x)
```


Summary Rewrite and Ho_Rewrite Library

- the Rewrite and Ho_Rewrite library provide powerful infrastructure for term rewriting
- thanks to clever implementations they are reasonably efficient
- basics are easily explained
- however, efficient usage needs some experience

Term Rewriting Systems

- to use rewriting efficiently, one needs to understand about term rewriting systems
- this is a large topic
- unluckily, it cannot be covered here in detail for time constraints
- however, in practise you quickly get a feeling
- important points in practise
- ensure termination of your rewrites
- make sure they work nicely together

Term Rewriting Systems - Termination

Theory

- choose well-founded order \prec
- for each rewrite theorem $\mid-\mathrm{t} 1=\mathrm{t} 2$ ensure $\mathrm{t} 2 \prec \mathrm{t} 1$

Practice

- informally define for yourself what simpler means
- ensure each rewrite makes terms simpler
- good heuristics
subterms are simpler than whole term
use an order on functions

Termination - Subterm examples

- a proper subterm is always simpler
- !1. APPEND [] l = 1
- !n. $\mathrm{n}+0=\mathrm{n}$
- !1. REVERSE (REVERSE 1) = 1
- !t1 t2. if T then t 1 else t 2 <=> t 1
- !n. $\mathrm{n} * 0=0$
- the right hand side should not use extra vars, throwing parts away is usually simpler
- ! x xs. (SNOC x xs = []) = F
- !x xs. LENGTH (x::xs) = SUC (LENGTH xs)
- ! n x xs. DROP (SUC n) ($\mathrm{x}:: \mathrm{xs}$) $=$ DROP n xs

Termination - use simpler terms

- it is useful to consider some functions simple and other complicated
- replace complicated ones with simple ones
- never do it in the opposite direction
- clear examples
- $\mathrm{I}-\mathrm{lm} \mathrm{n}$. MEM m (COUNT_LIST n) <=> (m < n)
- |- !ls n. (DROP n ls = []) <=> (n >= LENGTH ls)
- unclear example
- |- !L. REVERSE L = REV L []

Termination - Normal forms

- some equations can be used in both directions
- one should decide on one direction
- this implicitly defines a normal form one wants terms to be in
- examples
- |- !f l. MAP f (REVERSE l) = REVERSE (MAP f l)
- |- !11 l2 l3. l1 ++ (12 ++ l3) = 11 ++ 12 ++ 13

Termination - Problematic rewrite rules

- some equations immediately lead to non-termination, e.g.
- $1-$! m n. $m+n=n+m$
- $1-$! $\mathrm{m} . \mathrm{m}=\mathrm{m}+0$
- slightly more subtle are rules like
- $1-$!n. fact $n=i f(n=0)$ then 1 else $n *$ fact $(n-1)$
- often combination of multiple rules leads to non-termination this is especially problematic when adding to predefined sets of rewrites
- $1-!m n \mathrm{p} \cdot \mathrm{m}+(\mathrm{n}+\mathrm{p})=(\mathrm{m}+\mathrm{n})+\mathrm{p}$ and
|- ! m n p. $(m+n)+p=m+(n+p)$

Rewrites working together

- rewrite rules should not compete with each other
- Confluence: if a term ta can be rewritten to ta1 and ta2 applying different rewrite rules, then it should be possible to further rewrite ta1 and ta2 to a common tb
- this can often be achieved by adding extra rewrite rules

Example

Assume we have the rewrite rules $\mid-$ DOUBLE $n=n+n$ and
।- EVEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to

- T or
- EVEN (2 + 2).

To avoid a hard to predict result, EVEN $(2+2)$ should be rewritten to T. Adding an extra rewrite rule $\mid-$ EVEN $(\mathrm{n}+\mathrm{n})=\mathrm{T}$ achieves this.

Rewrites working together II

- to design rewrite systems that work well, normal forms are vital
- a term is in normal form if it cannot be rewritten any further
- one should have a clear idea what the normal form of common terms looks like
- all rules should work together to establish this normal form
- the order in which rules are applied should not influence the final result

computeLib

- computeLib is the library behind EVAL
- it is a rewriting library designed for evaluating ground terms (i.e. terms without variables) efficiently
- it uses a call-by-value strategy similar to SML's
- it uses first order term matching
- it performs β reduction in addition to rewrites

compset

- computeLib uses compsets to store its rewrites
- a compset stores
- rewrite rules
- extra conversions
- the extra conversions are guarded by a term pattern for efficiency
- users can define their own compsets
- however, computeLib maintains one special compset called the_compset
- the_compset is used by EVAL

EVAL

- EVAL uses the_compset
- tools like the Datatype or TFL libraries automatically extend the_compset
- this way, EVAL knows about (nearly) all types and functions
- one can extended the_compset manually as well
- rewrites exported by Define are good for ground terms but may lead to non-termination for non-ground terms
- zDefine prevents TFL from automatically extending the_compset

simpLib

- simpLib is a sophisticated rewrite engine
- it is HOL4's main workhorse
- it provides
- higher order rewriting
- usage of context information
- conditional rewriting
- arbitrary conversions
- support for decision procedures
- simple heuristics to avoid non-termination
- fancier preprocessing of rewrite theorems
- it is very powerful, but compared to Rewrite lib sometimes slow

Basic Usage I

- simpLib uses simpsets
- simpsets are special datatypes storing
- rewrite rules
- conversions
- decision procedures
- congruence rules
- in addition there are simpset-fragments
- simpset-fragments contain similar information as simpsets
- fragments can be added to and removed from simpsets
- common usage: basic simpset combined with one or more simpset-fragments, e. g.
- list_ss ++ pairSimps.gen_beta_ss
- std_ss ++ QI_ss
- ...

Basic Usage II

- a call to the simplifier takes as arguments
- a simpset
- a list of rewrite theorems
- common high-level entry points are
- SIMP_CONV ss thmL - conversion
- SIMP_RULE ss thmL - rule
- SIMP_TAC ss thmL - tactic without considering assumptions
- ASM_SIMP_TAC ss thmL - tactic using assumptions to simplify goal
- FULL_SIMP_TAC ss thmL - tactic simplifying assumptions with each other and goal with assumptions
- REV_FULL_SIMP_TAC ss thmL - similar to FULL_SIMP_TAC but with reversed order of assumptions
- there are many derived tools not discussed here

Basic Simplifier Examples

```
> SIMP_CONV bool_ss [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (SUC 0)
> SIMP_CONV std_ss [LENGTH] ''LENGTH [1;2]'`
val it = |- LENGTH [1; 2] = 2
> SIMP_CONV list_ss [] ''LENGTH [1;2]'`
val it = |- LENGTH [1; 2] = 2
```


FULL_SIMP_TAC Example

```
Current GoalStack
P (SUC (SUC x0)) (SUC (SUC yO))
    0. SUC y1 = y2
    1. x1 = SUC x0
    2. y1 = SUC y0
    3. SUC x1 = x2
```


Action

```
FULL_SIMP_TAC std_ss []
```

```
Resulting GoalStack
P (SUC (SUC x0)) y2
    0. SUC (SUC y0) = y2
    1. x1 = SUC x0
    2. y1 = SUC y0
    3. SUC x1 = x2
```


REV_FULL_SIMP_TAC Example

```
Current GoalStack
P (SUC (SUC x0)) y2
    0. SUC (SUC y0) = y2
    1. x1 = SUC x0
    2. y1 = SUC y0
    3. SUC x1 = x2
```


Action

```
REV_FULL_SIMP_TAC std_ss []
```


Resulting GoalStack

```
P x2 y2
```

 0. SUC (SUC y0) = y2
 1. \(\mathrm{x} 1=\) SUC x 0
 2. \(\mathrm{y} 1=\) SUC y 0
 3. SUC (SUC \(x 0)=x 2\)

Common simpsets

- pure_ss - empty simpset
- bool_ss - basic simpset
- std_ss - standard simpset
- arith_ss - arithmetic simpset
- list_ss - list simpset
- real_ss - real simpset

Common simpset-fragments

- many theories and libraries provide their own simpset-fragments
- PRED_SET_ss - simplify sets
- STRING_ss - simplify strings
- QI_ss - extra quantifier instantiations
- gen_beta_ss - β reduction for pairs
- ETA_ss - η conversion
- EQUIV_EXTRACT_ss - extract common part of equivalence
- CONJ_ss - use conjunctions for context
- LIFT_COND_ss - lifting if-then-else
- ...

Build-In Conversions and Decision Procedures

- in contrast to Rewrite lib the simplifier can run arbitrary conversions
- most common and useful conversion is probably β-reduction
- std_ss has support for basic arithmetic and numerals
- it also has simple, syntactic conversions for instantiating quantifiers

$$
\begin{aligned}
& \text {-!x. } . . / \backslash(x=c) / \backslash \ldots==>\ldots \\
& \text { - !x. } . . \quad \backslash / \sim(x=c) \backslash / \ldots \\
& \text { - ?x. ... } / \backslash(x=c) / \backslash \ldots
\end{aligned}
$$

- besides very useful conversions, there are decision procedures as well
- the most frequently used one is probably the arithmetic decision procedure you already know from DECIDE

Examples I

```
> SIMP_CONV std_ss [] '`(\x. x + 2) 5'`
val it = 1- (\x. x + 2) 5 = 7
> SIMP_CONV std_Ss [] ''!x. Q x /\ (x = 7) ==> P x'`
val it = |- (!x. Q x 八\ (x = 7) ==> P x) << (Q 7 ==> P 7)،،
> SIMP_CONV std_ss [] ''?x. Q x /\ (x = 7) /\ P x'`
val it = |- (?x. Q x /\ (x=7) \ P x) << (Q 7 /\P 7)،`
> SIMP_CONV std_ss [] ''x > 7 ==> x > 5'،
Exception- UNCHANGED raised
> SIMP_CONV arith_ss [] ''x > 7 ==> x > 5'،
val it = |- (x > 7 ==> x > 5) <=> T
```


Higher Order Rewriting

- the simplifier supports higher order rewriting
- this is often very handy
- for example it allows moving quantifiers around easily

```
Examples
> SIMP_CONV std_ss [FORALL_AND_THM] 's!x. P x /\ Q /\ R x'`
val it = |- (!x. P x /\ Q /\ R x) <<
    (!x. P x) /\Q /\ (!x. R x)
> SIMP_CONV std_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_FORALL_IMP_THM]
    '`!y. (P y /\ (?x. y = SUC x)) ==> Q y'`
val it = |- (!y. P y /\ (?x. y = SUC x) ==> Q y) <>
    !x. P (SUC x) ==> Q (SUC x)
```


Context

- a great feature of the simplifier is that it can use context information
- by default simple context information is used like
- the precondition of an implication
- the condition of if-then-else
- one can configure which context to use via congruence rules
- e.g. by using CONJ_ss one can easily use context of conjunctions
- warning: using CONJ_ss can be slow
- using context often simplifies proofs drastically
- using Rewrite lib, often a goal needs to be split and a precondition moved to the assumptions
- then ASM_REWRITE_TAC can be used
- with SIMP_TAC there is no need to split the goal

Context Examples

```
> SIMP_CONV std_ss [] ''((l = []) ==> P l) \\ Q l'`
val it = |- ((l = []) ==> P l) \\ Q l <<>
    ((1 = []) ==> P []) /\ Q l
```

```
> SIMP_CONV arith_ss [] ''if (c /\ x < 5) then (P c /\ x < 6) else Q c"،
```

> SIMP_CONV arith_ss [] ''if (c /\ x < 5) then (P c /\ x < 6) else Q c"،
val it = |- (if c
x < 5 then P c \ x < 6 else Q c) <<>
val it = |- (if c
x < 5 then P c \ x < 6 else Q c) <<>
if c \ x < 5 then P T else Q c:
if c \ x < 5 then P T else Q c:
> SIMP_CONV std_ss [] ''P x /\ (Q x /\ P x ==> Z x)'` Exception- UNCHANGED raised > SIMP_CONV (std_ss++boolSimps.CONJ_ss) [] ''P x /\ (Q x /\ P x ==> Z x)'`
val it = |- P x \ (Q x \ P x = => Z x) < P x /\ (Q x ==> Z x)

```

\section*{Conditional Rewriting I}
- perhaps the most powerful feature of the simplifier is that it supports conditional rewriting
- this means it allows conditional rewrite theorems of the form
|- cond ==> ( \(\mathrm{t} 1=\mathrm{t} 2\) )
- if the simplifier finds a term t1' it can rewrite via \(\mathrm{t} 1=\mathrm{t} 2\) to t 2 ', it tries to discharge the assumption cond'
- for this, it calls itself recursively on cond'
- all the decision procedures and all context information is used
- conditional rewriting can be used
- to prevent divergence, there is a limit on recursion depth
- if cond' \(=\mathrm{T}\) can be shown, \(\mathrm{t} 1^{\prime}\) is rewritten to \(\mathrm{t} \mathrm{D}^{\prime}\)
- otherwise t1' is not modified

\section*{Conditional Rewriting Example}
- consider the conditional rewrite theorem
```

!l n. LENGTH l <= n ==> (DROP n l = [])

```
- let's assume we want to prove
(DROP \(7[1 ; 2 ; 3 ; 4]\) ) ++ \([5 ; 6 ; 7]=[5 ; 6 ; 7]\)
- we can without conditional rewriting
- show I- LENGTH [1;2;3;4] <= 7
- use this to discharge the precondition of the rewrite theorem
- use the resulting theorem to rewrite the goal
- with conditional rewriting, this is all automated
> SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG] ''(DROP 7 [1;2;3;4]) ++ [5;6;7]'،
val it = I- DROP 7 [1; 2; 3; 4] ++ \([5 ; 6 ; 7]=[5 ; 6 ; 7]\)
- conditional rewriting often shortens proofs considerably

\section*{Conditional Rewriting Example II}
```

Proof with Rewrite
prove (``(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]'`,
'DROP 7 [1;2;3;4] = []' by (
MATCH_MP_TAC DROP_LENGTH_TOO_LONG >>
REWRITE_TAC[LENGTH] >>
DECIDE_TAC
) >>
ASM_REWRITE_TAC[APPEND])

```

\section*{Proof with Simplifier}
```

prove ('`(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]'`,
SIMP_TAC list_ss [])

```

Notice that DROP_LENGTH_TOO_LONG is part of list_ss.

\section*{Conditional Rewriting II}
- conditional rewriting is a very powerful technique
- decision procedures and sophisticated rewrites can be used to discharge preconditions without cluttering proof state
- it provides a powerful search for theorems that apply
- however, if used naively, it can be slow
- moreover, to work well, rewrite theorems need to of a special form

\section*{Conditional Rewriting Pitfalls I}
- if the pattern is too general, the simplifier becomes very slow
- consider the following, trivial but hopefully educational example

\section*{Looping example}
```

> val my_thm = prove ('،~P ==> (P = F)'`, PROVE_TAC[]) > time (SIMP_CONV std_ss [my_thm]) ''P1 /\ P2 /\ P3 /\ ... /\ P10'`
runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.
Exception- UNCHANGED raised
> time (SIMP_CONV std_ss []) ''P1 /\ P2 /\ P3 /\ ... /\ P10'`
runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.
Exception- UNCHANGED raised

```
- notice that the rewrite is applied at plenty of places (quadratic in number of conjuncts)
- notice that each backchaining triggers many more backchainings
- each has to be aborted to prevent diverging
- as a result, the simplifier becomes very slow
- incidentally, the conditional rewrite is useless

\section*{Conditional Rewriting Pitfalls II}
- good conditional rewrites \(\mid-c==>(1=r)\) should mention only variables in c that appear in 1
- if c contains extra variables x 1 ... xn , the conditional rewrite engine has to search instantiations for them
- this mean that conditional rewriting is trying discharge the precondition ?x1 ... xn. c
- the simplifier is usually not able to find such instances
```

Transitivity
> val P_def = Define 'P x y = x < y';
> val my_thm = prove ('`!x y z. P x y ==> P y z ==> P x z'`, ...)
> SIMP_CONV arith_ss [my_thm] ''P 2 3 \ P 3 4 ==> P 2 4'،
Exception- UNCHANGED raised
(* However transitivity of < build in via decision procedure *)
> SIMP_CONV arith_ss [P_def] ''P 2 3 \ P 3 4 ==> P 2 4'،
val it = |- P 2 3 \ P 3 4 ==> P 2 4 < T:

```

\section*{Conditional Rewriting Pitfalls III}
- let's look in detail why SIMP_CONV did not make progress above
```

> set_trace "simplifier" 2;
> SIMP_CONV arith_ss [my_thm] ''P 2 3 \ P 3 4 ==> P 2 4'،
[468000]: more context: |- !x y z. P x y ==> P y z ==> P x z
[468000]: New rewrite: |- (?y. P x y /\ P y z) ==> (P x z <<> T)
[584000]: more context: [.] |- P 2 3 \ P 3 4
[584000]: New rewrite: [.] |- P 2 3 <> T
[584000]: New rewrite: [.] |- P 3 4 <> T
[588000]: rewriting P 2 4 with l- (?y. P x y \ P y z) ==> (P x z <<> T)
[588000]: trying to solve: ?y. P 2 y /\ P y 4
[588000]: rewriting P 2 y with l- (?y. P x y \ P y z) ==> (P x z <=> T)
[592000]: trying to solve: ?y'. P 2 y' /\ P y' y
[596000]: looping - cut
[608000]: looping - stack limit reached
[640000]: couldn't solve: ?y. P 2 y 八\ P y 4
Exception- UNCHANGED raised

```

\section*{Conditional vs. Unconditional Rewrite Rules}
- conditional rewrite rules are often much more powerful
- however, Rewrite lib does not support them
- for this reason there are often two versions of rewrite theorems

\section*{drop example}
- DROP_LENGTH_NIL is a useful rewrite rule: |- ! 1. DROP (LENGTH 1) l = []
- in proofs, one needs to be careful though to preserve exactly this form one should not (partly) evaluate LENGTH 1 or modify 1 somehow
- with the conditional rewrite rule DROP_LENGTH_TOO_LONG one does not need to be as careful
|- ! 1 n . LENGTH \(1<=\mathrm{n}==>(D R O P \mathrm{n} \mathrm{l} \mathrm{=} \mathrm{[])}\)
the simplifier can simplify the precondition using information about LENGTH and even arithmetic decision procedures

\section*{Special Rewrite Forms}
- some theorems given in the list of rewrites to the simplifier are used for special purposes
- there are marking functions that mark these theorems
- Once : thm -> thm use given theorem at most once
- Ntimes : thm -> int -> thm use given theorem at most the given number of times
- AC : thm \(->\) thm \(->\) thm use given associativity and commutativity theorems for AC rewriting
- Cong : thm -> thm use given theorem as a congruence rule
- these special forms are easy ways to add this information to a simpset
- it can be directly set in a simpset as well

\section*{Example Once}
```

> SIMP_CONV pure_ss [Once ADD_COMM] '`a + b = c + d'`
val it = 1- (a + b = c + d) <> (b + a = c + d)
> SIMP_CONV pure_ss [Ntimes ADD_COMM 2] ''a + b = c + d'` val it = l- (a + b = c + d) <<> (a + b = c + d) > SIMP_CONV pure_ss [ADD_COMM] ''a + b = c + d`` Exception- UNCHANGED raised > ONCE_REWRITE_CONV [ADD_COMM] ''a + b = c + d`` val it = l- (a + b = c + d) <<> (b + a = d + c) > REWRITE_CONV [ADD_COMM] ''a + b = c + d'`
... diverges ...

```

\section*{Stateful Simpset}
- the simpset srw_ss() is maintained by the system
- it is automatically extended by new type-definitions
- theories can extend it via export_rewrites
- libs can augment it via augment_srw_ss
- the stateful simpset contains many rewrites
- it is very powerful and easy to use
```

Example
> SIMP_CONV (srw_ss()) [] ''case [] of [] => (2 + 4)''
val it = |- (case [] of [] => 2 + 4 | v::v1 => ARB) = 6

```

\section*{Discussion on Stateful Simpset}
- the stateful simpset is very powerful and easy to use
- however, results are hard to predict
- proofs using it unwisely are hard to maintain
- the stateful simpset can expand too much
- bigger, harder to read proof states
- high level arguments become hard to see
- whether to use the stateful simpset depends on personal proof style
- We advise to not use srw_ss at the beginning
- once you get a good intuition of how the simplifier works, make your own choice

\section*{Adding Own Conversions}
- it is complicated to add arbitrary decision procedures to a simpset
- however, adding simple conversions is straightforward
- a conversion is described by a stdconvdata record
```

type stdconvdata = {
name: string, (* name for debugging *)
pats: term list, (* list of patterns, when to try conv *)
conv: conv (* the conversion *)
}

```
- use std_conv_ss to create simpset-fragement
```

Example
val WORD_ADD_ss =
simpLib.std_conv_ss
{conv = CHANGED_CONV WORD_ADD_CANON_CONV,
name = "WORD_ADD_CANON_CONV",
pats = [''words\$word_add (w:'a word) y'`]}

```

\section*{Summary Simplifier}
- the simplifier is HOL4's main workhorse for automation
- conditional rewriting very powerful
- here only simple examples were presented
- experiment with it to get a feeling
- many advanced features not discussed here at all
- using congruence rules
- writing own decision procedures
- rewriting with respect to arbitrary congruence relations

\section*{Warning}

The simplifier is very powerful. Make sure you understand it and are in control when using it. Otherwise your proofs easily become lengthy, convoluted and hard to maintain.```

