
This document is available under the Creative Commons Attribution-ShareAlike
4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem Proving
Course” by Thomas Tuerk (https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:

• Pablo Buiras (https://people.kth.se/~buiras/)

• Karl Palmskog (https://setoid.com)

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://setoid.com


ITPPV Homework 1
due 23:59, Tuesday January 28, 2020

1 Setting up the Environment

We will use the HOL4 theorem prover1 in the course. For the homeworks, you will need to be
able to use HOL4 on your own machine. Therefore, please set up the following software.

1.1 Standard ML

You need to have an implementation of Standard ML (SML). Please install PolyML2 5.83.

1.2 HOL4

Please install version Kananaskis-13 of the HOL4 theorem prover4. Installation instructions can
be found on HOL4’s website5.

1.3 Emacs

In the lecture GNU Emacs6 will be used as a user-interface. Please install a recent version of
Emacs. Please make sure you use Emacs and not XEmacs.

1.4 HOL-mode and SML mode

We will use hol-mode for Emacs. It is distributed with HOL4, but needs setting up in Emacs.
Please set it up and familiarise yourself with its basic usage. Documentation can be found on
HOL4’s website7. We will write SML programs often. Please install the SML mode8 to enable
syntax highlighting for SML in Emacs. Information on both the SML and the HOL mode can
also be found in HOL4’s interaction manual9.

2 Standard ML

Let’s refresh our knowledge about Standard ML. The exercises below are aimed at getting familiar
with Emacs and using the SML mode, as preparation for using the HOL mode.
To learn more about the HOL Emacs mode, you can have a look at the HOL4 interaction

manual linked above. If you need a brush-up on SML syntax, we recommend reading something
compact like https://learnxinyminutes.com/docs/standard-ml/. If you need more material,
the book ML for the Working Programmer by Larry Paulson is a good introduction.

1https://hol-theorem-prover.org
2webpage http://www.polyml.org
3download link https://github.com/polyml/polyml/releases/tag/v5.8
4download link https://github.com/HOL-Theorem-Prover/HOL/releases/tag/kananaskis-13
5see https://hol-theorem-prover.org/#get
6https://www.gnu.org/software/emacs/
7see https://hol-theorem-prover.org/hol-mode.html
8https://elpa.gnu.org/packages/sml-mode.html
9https://hol-theorem-prover.org/HOL-interaction.pdf

1

https://learnxinyminutes.com/docs/standard-ml/
https://hol-theorem-prover.org
http://www.polyml.org
https://github.com/polyml/polyml/releases/tag/v5.8
https://github.com/HOL-Theorem-Prover/HOL/releases/tag/kananaskis-13
https://hol-theorem-prover.org/#get
https://hol-theorem-prover.org/hol-mode.html
https://elpa.gnu.org/packages/sml-mode.html
https://hol-theorem-prover.org/HOL-interaction.pdf


2.1 Your Own Lists

SML comes with a decent list library. Nevertheless, as an exercise, define your own list datatype
and implement the following list operations for that datatype:

• length

• append (@)

• rev

• revAppend

• exists

If you don’t know what these functions should do, you can find documentation of the Standard
ML Basis Library at e. g., http://sml-family.org. In addition, implement a function

replicate : ’a -> int -> ’a list

which is supposed to construct a list of the given length that only contains the given element.
For example, replicate "a" 3 should return the list ["a", "a", "a"].

1. Prove on pen and paper, using structural induction on your list datatype, that for your
implementation, append l [] = l holds for all l.

2. Similarly, prove using pen and paper that:
∀ l1 l2. length (append l1 l2) = length l1 + length l2.

3. There are strong connections between append, revAppend and rev. One can for exam-
ple define revAppend by revAppend l1 l2 = append (rev l1) l2. Write down similar
definitions for rev and append using only revAppend.

2.2 Making Change

In the following, let’s use the standard SML list library again. Write a program that, given the
coins and notes you have in your wallet, lists all the possible ways to pay a certain amount.
Represent the coins you have as a list of integers. If a number occurs twice in this list, you
have two coins with this value. The result should be returned in the form of a list of lists. For
simplicity, the output may contain duplicates. The function should have the following signature:

make change : int list -> int -> int list list

An implementation of the function can for example have the outputs below. Note that the output
of your implementation is allowed to contain duplicates and use a different order of the lists.

• make change [5,2,2,1,1,1] 6 =

[[5, 1], [2, 2, 1, 1]]

• make change [5,2,2,1,1,1] 15 = []

• make change [10,5,5,5,2,2,1,1,1] 10 =

[[10], [5, 5], [5, 2, 2, 1], [5, 2, 1, 1, 1]]

Write down as formally as you can some properties of make change. An example property is

∀ cs n. n > sum cs =⇒ make change cs n = []

where sum is defined by val sum = foldl (op+) 0 and we assume that cs contains no number
less than 0.

2

http://sml-family.org

	Setting up the Environment
	Standard ML
	HOL4
	Emacs
	HOL-mode and SML mode

	Standard ML
	Your Own Lists
	Making Change


