
This document is available under the Creative Commons Attribution-ShareAlike
4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem Proving
Course” by Thomas Tuerk (https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:

• Pablo Buiras (https://people.kth.se/~buiras/)

• Arve Gengelbach (https://people.kth.se/~arveg/)

• Karl Palmskog (https://setoid.com)

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://people.kth.se/~arveg/
https://setoid.com


ITPPV Homework 3
due 23:59 CET, Tuesday February 11, 2020

1 Self-Study

1.1 Tactics and Tacticals

Read background information on the tactics mentioned in lecture 3. Specifically, for each of the
tactics and tacticals mentioned in the slides, read the entry in the description manual.

1.2 hol-mode

Carefully study the Goalstack submenu of hol-mode. Learn the keycodes to set goals, expand
tactics, undo the last tactic expansion, restart the current proof and drop the current goal.

1.3 The Number and List Theories

We will use the natural number theory numTheory as well as the list theories listTheory and
rich listTheory a lot. Please familiarise yourself with these HOL4 theories (e. g. by looking at
their signature in the HTML version of the HOL4 Reference). I also recommend reading up on
other common theories like optionTheory, oneTheory and pairTheory. These won’t be needed
for this weeks exercises, though.

2 Backward Proofs

Part of this homework is about searching for useful existing theorems (e.g., useful rewrite rules).
Another part is understanding the effect of different rewrite rules and their combinations. Even
if you have experience with using HOL4, please refrain from using automated rewrite tools that
have not been covered in the lectures yet (which negate the purpose of the homework). Please
don’t use HOL4’s simplifier, and in particular, don’t use stateful simp-sets. Similarly, please
don’t use the compute lib via e.g., EVAL TAC.

For these tasks, it might be beneficial to open the modules listTheory and rich listTheory

via: open listTheory rich listTheory;

You will notice that when opening them that a lot of definitions are printed. This can con-
sume quite some time when opening many large theories. Play around with the hol-mode com-
mands Send region to HOL - hide non-errors and Quite - hide output except errors

to avoid this printout and the associated waiting time.

2.1 Replay Proofs from Lecture

If you have never done a tactical proof in HOL4 before, we recommend following the example
interactive proofs from Part VIII of the slides from lecture 3. Type them in your own HOL4
session, making the same mistakes as in the lecture. Use hol-mode to control the goalStack via
commands like expand, back-up, set goal, and drop goal. Get a feeling for how to interactively
develop a tactical proof. This task is optional; if you already feel confident with tactical proving,
feel free to skip it.

1



2.2 Formalise Induction Proofs from Exercise 1

For homework 1, some simple properties of lists were proved with pen and paper via structural
induction. Let’s now prove them formally using HOL4. Prove !l. l ++ [] = l by induction,
using the definition of APPEND (++). Similarly, prove the associativity of APPEND, i.e., prove

!l1 l2 l3. l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3

2.3 Reverse

SML’s revAppend is called REV in HOL4. Via any useful theorems you can find, prove the
theorem

!l1 l2. LENGTH (REV l1 l2) = (LENGTH l1 + LENGTH l2)

Next, let’s as an exercise reprove the existing theorems REVERSE REV and REV REVERSE LEM.
This means, first prove

!l1 l2. REV l1 l2 = REVERSE l1 ++ l2

and then, prove !l. REVERSE l = REV l [] using this theorem. You should not use the theo-
rems REVERSE REV or REV REVERSE LEM in these proofs.

2.4 Length of Drop

Prove the theorem

!l1 l2. LENGTH (DROP (LENGTH l2) (l1 ++ l2)) = LENGTH l1

directly using induction, i.e., without using lemmas like LENGTH DROP. Do one proof with Induct on

and a very similar proof with Induct. This is a bit tricky. Please play around with the proof for
some time. If you can’t figure it out, look at the hints at the end of this homework.

2.5 More Efficient List Operations

Often lists are used to encode sets, and the ordering of the list items is irrelevant. More efficient
list operations can avoid reversing the list. In this exercise you show first that map rev corre-
sponds to MAP despite the ordering of elements, and then prove the same for a list function of
your choice.
Using the following definitions of map rev, defined in terms of map rev acc.

Definition map_rev_acc_def:

map_rev_acc acc f [] = acc

/\ map_rev_acc acc f (h::ls) = map_rev_acc (f h :: acc) f ls

End

Definition map_rev_def:

map_rev f = map_rev_acc [] f

End

Prove correctness of map rev:

map rev f ls = REVERSE (MAP f ls)

Next, choose one of the list functions FILTER, TAKE, or FLAT and implement a version * rev

that avoids reversing the argument. Prove correctness of the implementation, similar to the
above.

2



2.6 Making Change

In homework 1, you were asked to implement a function make change in SML. Let’s now define
it in HOL4 and prove some properties about it. Define the function MAKE CHANGE in HOL4 using

val MAKE_CHANGE_def = Define ‘

(MAKE_CHANGE [] a = if (a = 0) then [[]] else []) /\

(MAKE_CHANGE (c::cs) a = (

(if (c <= a /\ 0 < a) then

(MAP (\l. c::l) (MAKE_CHANGE cs (a - c)))

else []) ++ (MAKE_CHANGE cs a)))‘;

Then, prove the theorems

!cs. MAKE CHANGE cs 0 = [[]]

and

!cs a l. MEM l (MAKE CHANGE cs a) ==> (SUM l = a)

3 Hints

3.1 More Efficient List Operations

As one intermediate step in the correctness proof for the above accumulator function map rev acc

you need to show the following invariant:

!f ls acc. map_acc acc f ls = (map_acc [] f ls) ++ acc

3.2 Length of Drop

For proving !l1 l2. LENGTH (DROP (LENGTH l2) (l1 ++ l2)) = LENGTH l1, induction on
the structure of l2 is a good strategy. However, one needs to be careful that l1 stays univer-
sally quantified. Expanding naively with GEN TAC >> Induct will remove the needed universal
quantification of l1.
To solve this, you can either use Induct on ‘l2‘ or get rid of both universal quantifiers and

then introduce them in a different order again. This is achieved by REPEAT GEN TAC >> SPEC TAC

(‘‘l1:’a list‘‘, ‘‘l1:’a list‘‘) >> SPEC TAC (‘‘l2:’a list‘‘, ‘‘l2:’a list‘‘).

3


	Self-Study
	Tactics and Tacticals
	hol-mode
	The Number and List Theories

	Backward Proofs
	Replay Proofs from Lecture
	Formalise Induction Proofs from Exercise 1
	Reverse
	Length of Drop
	More Efficient List Operations
	Making Change

	Hints
	More Efficient List Operations
	Length of Drop


