
This document is available under the Creative Commons Attribution-ShareAlike
4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem Proving
Course” by Thomas Tuerk (https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:

• Pablo Buiras (https://people.kth.se/~buiras/)

• Karl Palmskog (https://setoid.com)

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://setoid.com


ITPPV Homework 5
due 23:59 CET Tuesday February 25, 2020

1 Multiple Definitions / Formal Sanity

rich listTheory provides a predicate IS SUBLIST. It checks whether a list appears somewhere
as part of another list:

|- !l1 l2. IS_SUBLIST l1 l2 <=> ?l l’. l1 = l ++ (l2 ++ l’)

Define a weaker version of such a predicate called IS WEAK SUBLIST that allows additional
elements between the elements of l2. So, for example IS WEAK SUBLIST [1;2;3;4;5;6;7]

[2;5;6] should hold. In contrast the statements IS WEAK SUBLIST [1;2;3;4;5;6;7] [2;6;5]

or IS WEAK SUBLIST [1;2;3;4;5;6;7] [2;5;6;8] do not hold. Another way of describing the
semantics of IS WEAK SUBLIST l1 l2 is saying that one can get l2 by removing elements from
l1 while keeping the order.

1.1 Recursive Definition

Define IS WEAK SUBLIST recursively using Define. Name your function IS WEAK SUBLIST REC.
Test this definition via EVAL and prove at least two sanity check lemmas.

1.2 Filter Definition

Define a version of IS WEAK SUBLIST called IS WEAK SUBLIST FILTER using the existing list func-
tion FILTER. You might want to use ZIP, MAP, FST and SND as well. The idea is to check for
the existence of a list of booleans of the same length as l1, zip this list with l1 and filter. You
probably want to introduce auxiliary definitions before defining IS WEAK SUBLIST FILTER.
The resulting definition is not executable via EVAL. In any case, prove at least two sanity check

lemmas.

1.3 Equivalence Proof

Show IS WEAK SUBLIST REC = IS WEAK SUBLIST FILTER. You might want to prove various aux-
iliary lemmas first. You might want to use among other things FUN EQ THM and the list function
REPLICATE.

1.4 Properties (Optional)

Show the following properties of IS WEAK SUBLIST REC and IS WEAK SUBLIST FILTER. This means
that for each property stated below in terms of IS WEAK SUBLIST you should prove one lemma
using IS WEAK SUBLIST REC and another lemma using IS WEAK SUBLIST FILTER. Don’t use the
fact that both functions are equal. The point of this exercise is partly to demonstrate the impact
of different definitions on proofs. You might of course use previously proved lemmas to prove
additional ones.

1. !l1a l1 l1b l2. IS WEAK SUBLIST l1 l2 ==>

IS WEAK SUBLIST (l1a ++ l1 ++ l1b) l2

1



2. !l1a l1b l2a l2b. IS WEAK SUBLIST l1a l2a ==> IS WEAK SUBLIST l1b l2b ==>

IS WEAK SUBLIST (l1a ++ l1b) (l2a ++ l2b)

3. !l. IS WEAK SUBLIST l l

4. !l1 l2 l3. IS WEAK SUBLIST l1 l2 ==> IS WEAK SUBLIST l2 l3 ==>

IS WEAK SUBLIST l1 l3

5. !l1 l2. IS WEAK SUBLIST l1 l2 ==> IS WEAK SUBLIST l2 l1 ==> (l1 = l2)

2 Deep and Shallow Embeddings

As seen in the lecture let’s define a deep and a shallow embedding of propositional logic. Use
the names and definitions from the lecture notes. Add a definition stating that two propositional
formulas are equivalent, iff their semantics coincides for all variable assignments, i.e.

PROP_IS_EQUIV p1 p2 <=> (!a. PROP_SEM a p1 = PROP_SEM a p2)

2.1 Syntax for propositional formulas

Define in SML syntax functions for all shallowly embedded propositional formulas. Define for
each constructor a make - function, a destructor and a check. For sh and we would like to have
for example

• mk sh and : term -> term -> term,

• dest sh and : term -> (term * term) and

• is sh and : term -> bool.

Define a check is sh prop : term -> bool that checks whether a term is a shallowly embedded
propositional formula.

2.2 Getting Rid of Conjunction and Implication

Define a function PROP CONTAINS NO AND IMPL : prop -> bool in HOL4 that checks whether
a propositional formula contains no conjunction and implication operators. Define a similar
function sh prop contains no and impl in SML that checks the same property for shallowly
embedded formulas.
Define a function PROP REMOVE AND IMPL in HOL4 that removes all conjunctions and implica-

tions from a propositional formula and returns an equivalent one. Prove these properties, i.e.,
prove

• !p. PROP_IS_EQUIV (PROP_REMOVE_AND_IMPL p) p

• !p. PROP_CONTAINS_NO_AND_IMPL (PROP_REMOVE_AND_IMPL p)

Implement a similar function sh prop remove and impl : term -> thm in SML that per-
forms the same operation on the shallow embedding and returns a theorem stating that the
input term is equal to a version without conjunctions and implications. The SML version is
allowed to fail if the input term does not satisfy is sh prop.
Note that PROP REMOVE AND IMPL is a verified function, whereas sh prop remove and impl is

a verifying one.

2



3 Manual Termination Proofs

In the lecture, the termination proof for quicksort was briefly discussed. As an exercise, let’s
define minsort. This function minsort sorts a list of natural numbers, by always searching a
minimal element of the list, put it in front of the list a recursively sort the rest of this list. In
HOL4, it can be defined as

val expunge_def = Define ‘

(expunge x [] = [])

/\ (expunge x (h::t) = if x=h then expunge x t else h::expunge x t)‘;

val min_def = Define ‘

(min [] m = m)

/\ (min (h::t) m = if m <= h then min t m else min t h)‘;

val minsort_defn = Hol_defn "minsort" ‘

(minsort [] = [])

/\ (minsort (h::t) = let m = min t h in m::minsort (expunge m (h::t)))‘;

Note that TFL (i.e., Define) is not able to show automatically that minsort is terminating.
You need to do this manually. Show auxiliary lemmas about min and expunge and use them
with Defn.tprove (and Defn.tgoal) to show that minsort terminates.

3



4 Hints

4.1 Definition of IS WEAK SUBLIST

IS WEAK SUBLIST REC and IS WEAK SUBLIST FILTER can be defined by

val IS_WEAK_SUBLIST_REC_def = Define ‘

(IS_WEAK_SUBLIST_REC (l1 : ’a list) ([]:’a list) = T) /\

(IS_WEAK_SUBLIST_REC [] (_::_) = F) /\

(IS_WEAK_SUBLIST_REC (y::ys) (x::xs) = (

(x = y) /\ IS_WEAK_SUBLIST_REC ys xs) \/ (IS_WEAK_SUBLIST_REC ys (x::xs)))‘;

val FILTER_BY_BOOLS_def = Define ‘

FILTER_BY_BOOLS bl l = MAP SND (FILTER FST (ZIP (bl, l)))‘

val IS_WEAK_SUBLIST_FILTER_def = Define ‘IS_WEAK_SUBLIST_FILTER l1 l2 =

?(bl : bool list). (LENGTH bl = LENGTH l1) /\ (l2 = FILTER_BY_BOOLS bl l1)‘

4.2 Termination of minsort

minsort is an example of the TFL library. You can find a termination proof in the HOL sources.
However, really try to prove termination yourself first. Before you start looking up the proof,
here a few hints:

• The main idea is that the length of expunge m (h::t) is shorter than the length of h::t,
i.e.start your termination proof with WF REL TAC LENGTH.

• show the lemma !x xs. LENGTH (expunge x xs) <= LENGTH xs

• show the lemma !x xs. MEM x xs ==> LENGTH (expunge x xs) < LENGTH xs

• show the lemma !x xs. MEM (min xs x) (x::xs)

4


	Multiple Definitions / Formal Sanity
	Recursive Definition
	Filter Definition
	Equivalence Proof
	Properties (Optional)

	Deep and Shallow Embeddings
	Syntax for propositional formulas
	Getting Rid of Conjunction and Implication

	Manual Termination Proofs
	Hints
	Definition of IS_WEAK_SUBLIST
	Termination of minsort


