This document is available under the Creative Commons Attribution-ShareAlike
4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

Karl Palmskog (https://setoid.com) is the document author.

http://creativecommons.org/licenses/by-sa/4.0/
https://setoid.com

ITPPV Homework 7

due 23:59 CET Friday April 3, 2020

1 Regular Expressions and String Matching
Consider regular expressions as an inductive datatype according to the following definition:
rao=0|1|c|r+r|rr|r*

Encode this datatype in HOL4 in the most general way possible, i.e., let ¢ be an arbitrary type
rather than an ASCII character or similar.

Next, consider a matching relation < between strings s as lists of arbitrary characters and
regular expressions r (e is the empty list/string):

ERNA] ERE)
e<ql cdce s4Ary + 172 s4Ary + 12
s<qary s <arg sar s ar*
58 <Ary-ry ear® ss ar*

Encode this relation in HOL4, and prove that it holds as expected for some simple but not
completely trivial list of characters, for example: aaaabbbb<a* - b*

Finally, encode the following relation, which states roughly that “the string s matches » when
the character c is added to the beginning of s”:

csdr

§<e T

2 Function Returning Lists of Restricted Regular Expressions
For this task, restrict the previous notion of regular expression and relations to a fragment:
ro= 0|1 |c|r+r

Figure 1 on page 7 in the paper “Proof-Directed Debugging Revisited for a First-Order Ver-
sion”E] contains a definition of a function { that, given a regular expression r and a character
¢ (written r{.) returns a set of regular expressions. Your task is to implement this function in
HOL4, but returning lists rather than sets. Then, you should specify the correctness of your
function and prove it correct. Informally, the function can be specified as follows:

input a regular expression r and a character ¢ (in some completely arbitrary alphabet)

output a sound and complete list of regular expressions for strings that match r after their leading
character ¢ has been removed

More formally, suppose | = 77.. Then, for all s such that s <. r, there must exist some ' € [
such that s<r’. Moreover, if " € [, then for all s such that s<ir”, it must be the case that s<r.

1http: //citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.122&rep=repl&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.122&rep=rep1&type=pdf

3 Obtaining Verified Executable Code

Obtain verified executable code for your HOL4 implementation of the list version of the function
t—either through CakeML or the EmitML module bundled with HOL4. Check that the code
compiles properly (either with the CakeML bootstrapped compilelﬂ or PolyML). For CakeML
boilerplate, see the CakeML lecture slidesrf] and code for the proof system discussed in the lectureﬂ

4 Optional: Handle Complete Regular Expressions
Using the Proof Directed Debugging paper as a guide, extend the previous verified function and

code to the complete definition of regular expressions and matching. Note that this will require
using a non-trivial well-founded relation on input for termination, as outlined in the paper.

?https://github.com/CakeML/cakeml/releases/download/v1009/cake-x64-64.tar.gz
Shttps://kth-step.github.io/itppv-course/lectures/lecl10.pdf
4https://github.com/palmskog/fitch/tree/master/cakeml

https://github.com/CakeML/cakeml/releases/download/v1009/cake-x64-64.tar.gz
https://kth-step.github.io/itppv-course/lectures/lec10.pdf
https://github.com/palmskog/fitch/tree/master/cakeml

	Regular Expressions and String Matching
	Function Returning Lists of Restricted Regular Expressions
	Obtaining Verified Executable Code
	Optional: Handle Complete Regular Expressions

