
This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document uses the slide template from the “Interactive
Theorem Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

Karl Palmskog (https://setoid.com) is the document author.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://setoid.com

Part XX

Practical Program Verification with CakeML

CakeML Recap

CakeML is a functional programming language in the SML family

CakeML has a verified compiler which takes a long time to bootstrap
in HOL4

Even without boostrapping the compiler, we can use CakeML theories
to verify (HOL4) functions

We use the v1009 release of CakeML:
https://github.com/CakeML/cakeml/releases/download/v1009/cake-x64-64.tar.gz

https://github.com/CakeML/cakeml/archive/v1009.tar.gz

3 / 16

https://github.com/CakeML/cakeml/releases/download/v1009/cake-x64-64.tar.gz
https://github.com/CakeML/cakeml/archive/v1009.tar.gz

The CakeML Translator

SML translate function, taking HOL4 function/data as input

if successful, adds CakeML AST to current program state and outputs
equivalence theorem

has been used to generate and prove correct a significant fraction of
the SML basis library for CakeML

separate from the post-hoc verification environment (better suited for
imperative programs)

4 / 16

Simple Finite Map Encoding in HOL4

val _ = new_theory "simple_bst ";

val _ = Datatype ‘btree = Leaf | Node ’k ’v btree btree ‘;

val singleton_def = Define ‘

singleton k v = Node k v Leaf Leaf ‘;

val lookup_def = Define ‘

lookup cmp k Leaf = NONE

lookup cmp k (Node k’ v’ l r) =

case cmp k k’ of

| Less => lookup cmp k l

| Greater => lookup cmp k r

| Equal => SOME v’‘;

val insert_def = Define ‘

insert cmp k v Leaf = singleton k v

insert cmp k v (Node k’ v’ l r) =

case cmp k k’ of

| Less => Node k’ v’ (insert cmp k v l) r

| Greater => Node k’ v’ l (insert cmp k v r)

| Equal => Node k’ v l r‘;

5 / 16

Holmakefile for using CakeML Translator

CAKEMLDIR = /path/to/cakeml % location of unpacked v1009.tar.gz

INCLUDES = $(CAKEMLDIR)/misc $(CAKEMLDIR)/ semantics\
$(CAKEMLDIR)/ semantics/proofs\
$(CAKEMLDIR)/basis/pure\
$(CAKEMLDIR)/basis\
$(CAKEMLDIR)/ translator\
$(CAKEMLDIR)/ characteristic

all: $(DEFAULT_TARGETS)
.PHONY: all

6 / 16

CakeML Translating and Printing Boilerplate

open preamble ml_progLib ml_translatorLib astPP simple_bstTheory;

fun get_current_prog () =

let

val state = get_ml_prog_state ()

val state_thm =

state |> ml_progLib.remove_snocs |>

ml_progLib.clean_state |> get_thm

val current_prog =

state_thm |> concl |> strip_comb |> #2 |> el 2

in current_prog end;

val res = translate singleton_def;

val res = translate lookup_def;

val res = translate insert_def;

val _ = astPP.enable_astPP ();

print_term (get_current_prog ());

7 / 16

Pretty Printed Translator Output
datatype ’a option = Some (’a) | None;

datatype (’k , ’w) simple_bst_btree =

Node (’k) (’w) ((’k , ’w) simple_bst_btree)

((’k , ’w) simple_bst_btree) | Leaf;

fun singleton v1 = (fn v2 => (Node (v1) (v2) (Leaf) (Leaf)));

datatype ternaryComparisons_ordering = Greater | Equal | Less;

fun insert v5 v6 v8 v7 =

case v7

of Leaf => (singleton v6 v8)

| (Node (v4) (v3) (v2) (v1)) => (case (v5 v6 v4)

of Less => ((Node (v4) (v3) (insert v5 v6 v8 v2) (v1)))

| Equal => ((Node (v4) (v8) (v2) (v1)))

| Greater => ((Node (v4) (v3) (v2) (insert v5 v6 v8 v1))));

fun lookup v5 v6 v7 =

case v7

of Leaf => None

| (Node (v4) (v3) (v2) (v1)) => (case (v5 v6 v4)

of Less => (lookup v5 v6 v2)

| Equal => ((Some (v3)))

| Greater => (lookup v5 v6 v1));
8 / 16

Organizing the Program Verification Effort

definitions can be suitable for reasoning or execution, but seldom both

correctness arguments should be done at high abstraction level

certification of programs can be separated from correctness reasoning

9 / 16

One Possible Methodology

1 encode problem using proof-friendly datatypes in HOL4 (lists, sets)

2 state and prove main correctness properties abstractly, e.g., using
relations and pure functions

3 figure out and encode execution-friendly datatypes

4 refine proof-friendly functions and data to execution-friendly ones

5 apply CakeML translator on execution-friendly functions and data

6 compile translated functions and data using standalone compiler, or
generate machine code directly

10 / 16

Case Study: Propositional Logic Proof Checker

proof system taken from the book “Logic for Computer Science” by
Huth and Ryan

system (specification) is a set of inference rules

correctness of the system is that rules are sound

an executable proof checker validates that a given proof adheres to
the inference rules

code at https://github.com/palmskog/fitch

11 / 16

https://github.com/palmskog/fitch

Example Proof With Box

q |- p -> q

[

1 p assumption

2 q premise

]

3 p -> q impi 1-2

12 / 16

Examples of Inference Rules

Γ(l ′) = ϕ ∧ ϕ′

Γ, ϕ ⊢ l ϕ ∧ e1 l ′
vd ande1

Γ(l1) = ϕ → ϕ′

Γ(l2) = ¬ϕ′

Γ, ϕ ⊢ l ¬ϕ MT l1, l2
vd mt

Γ(l ′) = ϕ

Γ, ϕ ⊢ l ϕ ∨ ϕ′ ∨ i1 l ′
vd ori1

Γ(l ′) = ϕ

Γ, ϕ ⊢ l ¬¬ϕ ¬¬i l ′
vd negnegi

Γ(l ′) = ⊥
Γ, ϕ ⊢ l ϕ ⊥e l ′

vd conte
Γ(l1, l2) = (ϕ, ϕ′)

Γ, ϕ ⊢ l ϕ → ϕ′ →i l1 − l2
vd impi

13 / 16

Reasoning Friendly Function

Definition valid_derivation_deriv_impi:

valid_derivation_deriv_impi G l1 l2 p =

case p of

| prop_imp p1 p2 =>

(case FLOOKUP G (INR (l1, l2)) of

| SOME (INR (p3, p4)) => p1 = p3 /\ p2 = p4

| _ => F)

| _ => F

End

Theorem valid_derivation_deriv_impi_sound:

!G pl l1 l2 l’ p.

valid_derivation_deriv_impi G l1 l2 p <=>

valid_derivation G pl (derivation_deriv l’ p

(reason_justification (justification_impi l1 l2)))

Proof

(* ... *)

QED

14 / 16

CakeML Friendly HOL4 Function

Definition valid_derivation_deriv_impi_cake:

valid_derivation_deriv_impi_cake t l1 l2 p =

case p of

| prop_imp p1 p2 =>

(case lookup t (INR (l1, l2)) of

| SOME (INR (p3, p4)) => p1 = p3 /\ p2 = p4

| _ => F)

| _ => F

End

Theorem valid_derivation_deriv_impi_eq:

!t l1 l2 p. map_ok t ==>

valid_derivation_deriv_impi_cake t l1 l2 p =

valid_derivation_deriv_impi (to_fmap t) l1 l2 p

Proof

rw [valid_derivation_deriv_impi_cake ,valid_derivation_deriv_impi] \\

rw [lookup_thm]

QED

15 / 16

Generated CakeML Function

fun valid_derivation_deriv_impi_cake v17 =

(fn v14 =>

(fn v15 =>

(fn v16 =>

case v16

of (Prop_p (v1)) => (0 < 0)

| (Prop_neg (v2)) => (0 < 0)

| (Prop_and (v4) (v3)) => (0 < 0)

| (Prop_or (v6) (v5)) => (0 < 0)

| (Prop_imp (v13) (v12)) =>

(case (Map.lookup v17 (let val x = (v14 ,v15)

in

(Inr (x))

end))

of None => (0 < 0)

| ((Some (v11))) => (case v11

of ((Inl (v7))) => (0 < 0)

| ((Inr (v10))) => (case v10

of (v9,v8) => ((v13 = v9) andalso (v12 = v8)))))

| Prop_cont => (0 < 0))));

16 / 16

	Practical Program Verification with CakeML

