This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document uses the slide template from the “Interactive
Theorem Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

Karl Palmskog (https://setoid.com) is the document author.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://setoid.com

Part XX

Practical Program Verification with CakeML

by

Sy,
EZKTHY

VETENSKAP
@8 OCH KONST 2%

) 9

T

CakeML Recap

@ CakeML is a functional programming language in the SML family

@ CakeML has a verified compiler which takes a long time to bootstrap
in HOL4

@ Even without boostrapping the compiler, we can use CakeML theories
to verify (HOL4) functions

@ We use the v1009 release of CakeML:
https://github.com/CakeML/cakeml/releases/download/v1009/cake-x64-64.tar.gz
https://github.com/CakeML/cakeml/archive/v1009.tar.gz

3/16

https://github.com/CakeML/cakeml/releases/download/v1009/cake-x64-64.tar.gz
https://github.com/CakeML/cakeml/archive/v1009.tar.gz

The CakeML Translator

e SML translate function, taking HOL4 function/data as input

@ if successful, adds CakeML AST to current program state and outputs
equivalence theorem

@ has been used to generate and prove correct a significant fraction of
the SML basis library for CakeML

@ separate from the post-hoc verification environment (better suited for
imperative programs)

4/16

Simple Finite Map Encoding in HOL4

val _ = new_theory "simple_bst";
val _ = Datatype ‘btree = Leaf | Node ’k ’v btree btree‘;
val singleton_def = Define

singleton k v = Node k v Leaf Leaf ‘;

val lookup_def = Define‘
lookup cmp k Leaf = NONE
lookup cmp k (Node k’ v’ 1 r) =
case cmp k k’ of
| Less => lookup cmp k 1
| Greater => lookup cmp k r
| Equal => SOME v’ ¢;

val insert_def = Define‘
insert cmp k v Leaf = singleton k v
insert cmp k v (Node k’ v’ 1 r) =
case cmp k k’ of
| Less => Node k’ v’ (imsert cmp k v 1) r
| Greater => Node k’ v’ 1 (insert cmp k v r)
| Equal => Node k’ v 1 r*;

5/16

Holmakefile for using CakeML Translator

CAKEMLDIR = /path/to/cakeml) location of unpacked v1009.tar.gz
INCLUDES = $(CAKEMLDIR)/misc $(CAKEMLDIR)/semantics\

$ (CAKEMLDIR)/semantics/proofs\

$ (CAKEMLDIR) /basis/pure\

$ (CAKEMLDIR)/basis\

$ (CAKEMLDIR)/translator\

$ (CAKEMLDIR)/characteristic

all: $(DEFAULT_TARGETS)
.PHONY: all

6/16

CakeML Translating and Printing Boilerplate

open preamble ml_progLib ml_translatorLib astPP simple_bstTheory;

fun get_current_prog() =
let
val state = get_ml_prog_state()
val state_thm =
state |> ml_proglib.remove_snocs |>
ml_proglib.clean_state |> get_thm
val current_prog =
state_thm |> concl |> strip_comb [> #2 [> el 2
in current_prog end;

val res = translate singleton_def;
val res = translate lookup_def;
val res = translate insert_def;
val _ = astPP.enable_astPP();

print_term (get_current_prog());

7/16

Pretty Printed Translator Output

datatype ’a option = Some (’a) | None;

datatype (’k , ’w) simple_bst_btree =

Node (’k) (’w) ((’k , ’w) simple_bst_btree)

((’kx , ’w) simple_bst_btree) | Leaf;
fun singleton vi = (fn v2 => (Node (v1) (v2) (Leaf) (Leaf)));
datatype ternaryComparisons_ordering = Greater | Equal | Less;

fun insert v5 v6 v8 v7 =

case v7

of Leaf => (singleton v6 v8)

| (Node (v4) (v3) (v2) (v1)) => (case (v5 v6 v4d)

of Less => ((Node (v4) (v3) (insert v5 v6 v8 v2) (v1)))

| Equal => ((Node (v4) (v8) (v2) (v1)))

| Greater => ((Node (v4) (v3) (v2) (insert v5 v6 v8 v1))));

fun lookup v5 v6 v7 =
case V7
of Leaf => None
| (Node (v4) (v3) (v2) (v1)) => (case (vb v6 v4)
of Less => (lookup v5 v6 v2)
| Equal => ((Some (v3)))

| Greater => (lookup v5 v6 v1));
8/16

Organizing the Program Verification Effort

@ definitions can be suitable for reasoning or execution, but seldom both
@ correctness arguments should be done at high abstraction level

@ certification of programs can be separated from correctness reasoning

9/16

One Possible Methodology

© 0

© 000

encode problem using proof-friendly datatypes in HOL4 (lists, sets)

state and prove main correctness properties abstractly, e.g., using
relations and pure functions

figure out and encode execution-friendly datatypes
refine proof-friendly functions and data to execution-friendly ones
apply CakeML translator on execution-friendly functions and data

compile translated functions and data using standalone compiler, or
generate machine code directly

10/16

Case Study: Propositional Logic Proof Checker

@ proof system taken from the book “Logic for Computer Science” by
Huth and Ryan

@ system (specification) is a set of inference rules
@ correctness of the system is that rules are sound

@ an executable proof checker validates that a given proof adheres to
the inference rules

@ code at https://github.com/palmskog/fitch

11/16

https://github.com/palmskog/fitch

Example Proof With Box

ql-p ->q

L
1 p assumption
2 q premise

]
3 p -> q impi 1-2

12/16

Examples of Inference Rules

F(h)=¢— ¢
F(l’) =¢pAN¢ F(IQ) = ¢/
— VD_ANDE1 — VD_MT
Mol Nerl MokH1l-¢ MTHh, kL
r(')y=¢ r(ry=¢
— VD_ORI1 — VD_NEGNEGI
MoElove Vigl Mok Il—-—¢p =il
rMN=.1L M(h,b)=(p,¢
() VD_CONTE (! 2) (¢ ¢) VD_IMPI

ToFl¢ Lel ToFl¢—¢ —ih—h

13/16

Reasoning Friendly Function

Definition valid_derivation_deriv_impi:

valid_derivation_deriv_impi G 11 12 p =
case p of
| prop_imp pl p2 =>
(case FLOOKUP G (INR (11, 12)) of
| SOME (INR (p3, p4)) => pl = p3 /\ p2 = p4
| - =>F)
| _ =>F

End

Theorem valid_derivation_deriv_impi_sound:
'G pl 11 12 1’ p.
valid_derivation_deriv_impi G 11 12 p <=>
valid_derivation G pl (derivation_deriv 1’ p
(reason_justification (justification_impi 11
Proof
(x ... %)
QED

12)))

14/16

CakeML Friendly HOL4 Function

Definition valid_derivation_deriv_impi_cake:
valid_derivation_deriv_impi_cake t 11 12 p
case p of
| prop_imp pl p2 =>
(case lookup t (INR (11, 12)) of
| SOME (INR (p3, p4)) => pl = p3 /\ p2 = p4
| - =>F)
| _ =>F

End

Theorem valid_derivation_deriv_impi_eq:
't 11 12 p. map_ok t ==>
valid_derivation_deriv_impi_cake t 11 12 p =
valid_derivation_deriv_impi (to_fmap t) 11 12 p
Proof
rw [valid_derivation_deriv_impi_cake,valid_derivation_deriv_impi] \\
rwv [lookup_thm]
QED

15/16

Generated CakeML Function

fun valid_derivation_deriv_impi_cake v17 =
(fn vi1d =>
(fn v15 =>
(fn vi6 =>
case vVv16
of (Prop_p (v1)) => (0 < 0)
| (Prop_neg (v2)) => (0 < 0)
| (Prop_and (v4) (v3)) => (0 < 0)
| (Prop_or (v6) (v5)) => (0 < 0)
| (Prop_imp (v13) (v12)) =>
(case (Map.lookup v17 (let val x = (v14,v15)
in
(Inr (x))
end))
of ©Nomne => (0 < 0)
| ((Some (v11))) => (case vi1l
of ((Inl (v7))) => (0 < 0)
| ((Inr (v10))) => (case v10
of (v9,v8) => ((v13 = v9) andalso (v12 = v8)))))
| Prop_cont => (0 < 0))));

16/16

	Practical Program Verification with CakeML

