
This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document uses the slide template from the “Interactive
Theorem Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

Pablo Buiras (https://people.kth.se/~buiras/), Arve
Gengelbach (https://people.kth.se/~arveg/) and Karl
Palmskog (https://setoid.com) are the document authors.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://people.kth.se/~arveg/
https://setoid.com


Part XXI

HOL4 and ITPs in Research: an Overview



HOL4 and ITPs in Perspective

this course only looks at the basics of ITP and HOL4

thousands of researchers and engineers around the world use ITPs,
and use is growing (mostly in Europe)

ITPs can serve as platforms that connect programs, hardware,
mathematical definitions, mathematical results

many CS conferences and journals encourage use of ITPs; may
become mandatory in the future

3 / 23



Proof Engineering

developing large trustworthy systems using ITPs requires:
▶ knowledge of strengths and limitations of selected ITP
▶ good choice of underlying mathematical theories
▶ careful selection of libraries and other tools
▶ effective encodings of specifications and implementation
▶ adequate development infrastructure and processes
▶ . . .

the emerging field that considers these and related concerns
holistically is called proof engineering

see recent survey of proof engineering for program verification:
https://arxiv.org/abs/2003.06458

many concerns and ideas from software engineering apply—but
generally unknown to what extent

ITP languages tend to be nicely behaved and designed in comparison
to many traditional programming languages

4 / 23

https://arxiv.org/abs/2003.06458


Strengths and Limitations of HOL4

+ based on classical higher order logic, a sweet spot between
expressivity and ease of automation

+ trustworthy thanks to LCF approach

+ simple enough to understand easily

+ very easy to write custom proof tools, i. e. , own automation

+ reasonably fast and efficient

+ good automation

+ comprehensive bundled theories

− can’t have types depend on term, e. g. , Rn

− no organizational mechanisms such as type classes or modules

− no user interface (besides SML toplevel)

− no special proof language

− no IDE, very modest editor support

− modestly-sized ecosystem, hard to google questions

5 / 23



Strengths and Limitations of Coq

+ based on a constructive higher-order type theory

+ logic is highly expressive (dependent types, universes, . . . )

+ trustworthy thanks to small type checker

+ allows verified computation inside proofs (reflection)

+ functions are computable by default

+ large ecosystem, relatively easy to google questions

+ supported by many graphical interfaces and IDEs

− tactic execution and proof checking can be slow (explicit proofs)

− low level of built-in automation (need many plugins)

− many separately developed incompatible “standard” libraries

− difficult to write custom proof tools besides using tactic language

See a more detailed comparison of Coq and HOL:
https://coq.discourse.group/t/

why-doesnt-coq-have-a-theorem-type-like-hol-light/532

6 / 23

https://coq.discourse.group/t/why-doesnt-coq-have-a-theorem-type-like-hol-light/532
https://coq.discourse.group/t/why-doesnt-coq-have-a-theorem-type-like-hol-light/532


Other ITPs

HOL Light — like HOL4, but implemented in OCaml

Isabelle/HOL — HOL logic with comprehensive automation, math
proof language, advanced IDE, Archive of Formal Proofs

Lean — Coq-like type theory with classical logic and built-in
automation

Agda — constructive Coq-like type theory

ACL2 — first-order logic with strong automation (idealized version
formalised in HOL4, Milawa)

NuPRL & RedPRL — constructive extensional type theory

Definitions and theorem statements can often be directly transferred
between systems, but proofs must typically be manually ported.

7 / 23



Learning and Reusing Libraries and Projects

due to cost of using ITPs, important to avoid reinventing the wheel

many CS applications already have several formalisations for a given
ITP, but can still be inconvenient to “fit into” existing formalisation

proper reuse of libraries may require careful study and experimentation

there is probably no substitute for looking at lots of ITP code

compare learning APIs in traditional programming languages such as
Java and C++

8 / 23



HOL4 Theories I

Besides the basic libraries and theories that are required and loaded by
hol, there are many more developments in HOL4’s source directory.

src/sort – sorting lists

src/string – strings

src/TeX – exporting LaTeX code

src/res quan – restricted quantifiers

src/quotient – quotient type package

src/finite map – finite map theory

src/bag – bags a. k. a. multisets

src/n-bit – machine words

9 / 23



HOL4 Theories II

src/ring – reasoning about rings

src/integer – integers

src/llists – lazy lists

src/path – finite and infinite paths through a transition system

src/patricia – efficient finite map implementations using trees

src/emit – emitting SML and OCaml code

src/search – traversal of graphs that may contain cycles

src/relation – relations, including transition system bisimulations

10 / 23



HOL4 Theories III

src/rational – rational numbers

src/real – real numbers

src/complex – comples numbers

src/HolQbf – quantified boolean formulas

src/HolSmt – support for external SMT solvers

src/float – IEEE floating point numbers

src/floating-point – new version of IEEE floating point numbers

src/probability – probability theory

src/temporal – shallow embedding of temporal logic

. . .

11 / 23



HOL4 Selected Examples I

The directory examples hosts many theories and libraries as well. There is
not always a clear distinction between an example and a development in
src. However, in general examples are more specialised and often larger.
They are not required to follow HOL4’s coding style as much as
developments in src.

examples/balanced bst – finite maps via balanced trees

examples/unification – (nominal) unification

examples/Crypto – various block ciphers

examples/elliptic – elliptic curve cryptography

examples/formal-languages – regular and context free formal
languages

examples/computability – basic computability theory

12 / 23



HOL4 Selected Examples II

examples/set-theory – axiomatic formalisation of set theory

examples/lambda – lambda calculus

examples/acl2 – connection to ACL2 prover

examples/theorem-prover – soundness proof of Milawa prover

examples/PSL – formalisation of PSL

examples/HolBdd – Binary Decision Diagrams

examples/HolCheck – basic model checker

examples/temporal deep – deep embedding of temporal logics and
automata

13 / 23



HOL4 Selected Examples III

examples/pgcl formalisation of pGCL (the Probabilistic Guarded
Command Language)

examples/dev – some hardware compilation

examples/STE – symbolic trajectory evalutation

examples/separationLogic – formalisation of separation logic

examples/ARM – formalisation of ARM architecture

examples/l3-machine-code – l3 language

examples/machine-code – compilers and decompilers to
machine-code

. . .

14 / 23



Some Ongoing Research Projects Related to HOL4

Rigorous Engineering of Mainstream Systems (REMS)
▶ https://www.cl.cam.ac.uk/~pes20/rems/
▶ NetSem, validated formalisation of the TCP/IP stack
▶ SAIL language for defining Instruction-Set Architecture (ISA) models

CakeML, including Candle, a verified HOL interactive theorem prover

Formalisation of Network Interface Controllers

HolBA and SCAM-V

15 / 23

https://www.cl.cam.ac.uk/~pes20/rems/


HolBA

Binary analysis platform in HOL4

Toolkit to analyse and reason about low-level (assembly) code

Relies on formal semantics of ISAs (ARM/Risc-V/etc)

Binary Intermediate Representation (BIR)
▶ Language designed to automate analysis
▶ Formal semantics in HOL4
▶ Similar to LLVM IR

Program not in memory / Assertions

Verified theories and proof producing analyses
▶ Transpilation into BIR
▶ Weakest precondition
▶ Symbolic execution

16 / 23



HolBA Lifter (transpiler)

0: pop R1

4: push R1

⇓

[0 { R1 := MEM[SP];

SP := SP-4;

PC := PC+4;

JMP 4}]

[4 { MEM := MEM with [SP<-R1];

SP := SP+4;

PC := PC+4;

JMP 8}]

Simulation theorem:

17 / 23



SCAM-V: Side-channel abstract model validator

Modern architectures are too complex to directly analyse
side-channels

Abstract models based on system-state observations

Assumption: States with equivalent observations in the model are
indistinguishable to the attacker on real hardware

SCAM-V validates this by generating and testing states that are
supposed to be indistinguishable.

18 / 23



Verification vs validation

Verification: formally proving that the program satisfies its formal
specification

Validation: testing that the program satisfies its formal specification

Validation cannot prove the absence of errors

In most cases, verification is preferred, but it is much more costly

Sometimes it’s not possible, e.g. soundness of side-channel models
with respect to microarchitecture

Final decision sometimes boils down to risk assessment and resource
allocation

It is possible to mix and match depending on requirements, i.e. critical
modules can be verified, while less critical ones can be validated

19 / 23



Some Ongoing Research in Proof Engineering

improvements and extensions to portability tools such as Ott and Lem

improvement and verification of incremental proof checking —
https://setoid.com/chip

proof repair and proof transfer — https://proofengineering.org

mutation analysis of ITP theories to find weak specifications —
http://cozy.ece.utexas.edu/mcoq/

learning and suggesting naming and formatting in ITP code

20 / 23

https://setoid.com/chip
https://proofengineering.org
http://cozy.ece.utexas.edu/mcoq/


Trends in ITP for Research

type theory ITPs heavily used programming languages research
(POPL, PLDI)

HOL-based ITPs often used in hardware-related research (FMCAD)
and automated reasoning (IJCAR)

lots of work on formalising mathematics, but ongoing debate which
foundation and ITP should be used (CPP, ITP)

ITP interface research may see a resurgence as ITPs go more
mainstream

bias towards “complete” formalisations for getting research published

21 / 23



Trends in Industrial Application of ITPs

ITP verified cryptographic code included in Google Chrome

seL4 and CompCert starting to get used in embedded systems

Dune build system includes verified cycle checking code

hardware designers and manufacturers look to apply formal
verification (again?)

22 / 23



Challenges in Research Using ITPs

working in a research group with knowledge of ITPs helps a lot, but
documentation and resources for individual work are improving

ITP experts may have unrealistically high expectations when
reviewing applied work

researchers without ITP expertise may underestimate effort and
difference in trustworthiness

personal experience: ITP community much friendlier to engineering
research than the software engineering community is to ITP-based
research

23 / 23


	HOL4 and ITPs in Research: an Overview

