
This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem
Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:

▶ Pablo Buiras (https://people.kth.se/~buiras/)

▶ Arve Gengelbach (https://people.kth.se/~arveg/)

▶ Karl Palmskog (https://setoid.com)

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://people.kth.se/~arveg/
https://setoid.com

Part VI

Basic HOL4 Usage

HOL4 Technical Usage Issues

practical issues are discussed outside of lectures
▶ details on installing HOL4
▶ which key-combinations to use in hol-mode for Emacs
▶ detailed signatures of libraries and theories
▶ all parameters and options of certain tools
▶ . . .

mentioned in homeworks sometimes
▶ tasks to read some documentation
▶ provides examples
▶ lists references where to get additional information

if you have problems, ask lecturers (buiras@kth.se, palmskog@kth.se)

covered only very briefly in lectures

45 / 70

mailto:buiras@kth.se
mailto:palmskog@kth.se

Installing HOL4

website: https://hol-theorem-prover.org

HOL4 supports two SML implementations
▶ Moscow ML (http://mosml.org)
▶ PolyML (http://www.polyml.org)

we use only PolyML 5.8 in this course

please use emacs with
▶ hol-mode
▶ sml-mode
▶ hol-unicode, if you want to type Unicode

please install the Kananaskis 13 release

documentation found on HOL4 website and with sources

46 / 70

https://hol-theorem-prover.org
http://mosml.org
http://www.polyml.org

General Architecture

HOL4 is a collection of SML modules

starting HOL4 starts a SML Read-Eval-Print-Loop (REPL) with
▶ some HOL4 modules loaded
▶ some default modules opened
▶ an input wrapper to help parsing terms called unquote

unquote provides special quotes for terms and types
▶ implemented as input filter
▶ ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]
▶ ‘‘:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]

main interfaces
▶ emacs (used in this course)
▶ vim
▶ rudimentary VSCode support
▶ bare shell

47 / 70

https://marketplace.visualstudio.com/items?itemName=oskarabrahamsson.hol4-mode

Filenames

*Script.sml — HOL4 proof script file
▶ script files contain definitions and proof scripts
▶ executing them results in HOL4 searching and checking proofs
▶ this might take very long
▶ resulting theorems are stored in *Theory.{sml|sig} files

*Theory.{sml|sig} — HOL4 theory
▶ auto-generated by corresponding script file
▶ load quickly, because they don’t search/check proofs
▶ do not edit theory files

*Syntax.{sml|sig} — syntax libraries
▶ contain syntax related functions
▶ i. e. functions to construct and destruct terms and types

*Lib.{sml|sig} — general libraries

*Simps.{sml|sig} — simplifications

selftest.sml — selftest for current directory

48 / 70

HOL4 Project Version Control Repository Guidelines

ignore *Theory.sml and *Theory.sig

ignore the directories .HOLMK and .hollogs

commit all custom *.sml and *.sig files

don’t forget *Script.sml files and Holmakefile

49 / 70

HOL4 Release Directory Structure

bin — HOL4 binaries

src — HOL4 sources

examples — HOL4 examples
▶ interesting projects by various people
▶ examples owned by their developer
▶ coding style and level of maintenance differ a lot

help — sources for reference manual
▶ after compilation home of reference HTML page

Manual — HOL4 manuals
▶ Tutorial
▶ Description
▶ Reference (PDF version)
▶ Interaction
▶ Quick (cheat pages)
▶ Style-guide
▶ . . .

50 / 70

Unicode

HOL4 supports both Unicode and pure ASCII input and output

advantages of Unicode compared to ASCII
▶ easier to read (good fonts provided)
▶ no need to learn special ASCII syntax

disadvantages of Unicode compared to ASCII
▶ harder to type (even with hol-unicode.el)
▶ less portable between systems

whether you use Unicode is highly a matter of personal taste

HOL4’s policy
▶ no Unicode in HOL4’s source directory src, except λ (codepoint

U+03BB)
▶ Unicode in examples directory examples is fine

we strongly recommend turning Unicode output off
▶ this simplifies learning the ASCII syntax
▶ no need for special fonts
▶ it is easier to copy and paste terms from HOL4’s output

51 / 70

Where to find help?

reference manual
▶ available as HTML pages, single PDF file and in-system help

description manual

style guide (still under development)

HOL4 website (https://hol-theorem-prover.org)

mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask the lecturers (buiras@kth.se, palmskog@kth.se)

52 / 70

https://hol-theorem-prover.org
mailto:buiras@kth.se
mailto:palmskog@kth.se

Part VII

Forward Proofs

Kernel too detailed

we already discussed the HOL Logic

the kernel itself does not even contain basic logic operators

usually one uses a much higher level of abstraction
▶ many operations and datatypes are defined
▶ high-level derived inference rules are used

let’s now look at this more common abstraction level

54 / 70

Common Terms and Types
Unicode ASCII

type vars α, β, . . . ’a, ’b, . . .
type annotated term term:type term:type

true T T

false F F

negation ¬b ~b
conjunction b1 ∧ b2 b1 /\ b2

disjunction b1 ∨ b2 b1 \/ b2

implication b1 =⇒ b2 b1 ==> b2

equivalence b1 ⇐⇒ b2 b1 <=> b2

inequality v1 ̸= v2 v1 <> v2

universal quantification ∀x. P x !x. P x

existential quantification ∃x. P x ?x. P x

Hilbert’s choice @x. P x @x. P x

There are similar restrictions to constant and variable names as in SML.
HOL4 specific: don’t start variable names with an underscore

55 / 70

Syntax conventions

common function syntax
▶ prefix notation, e. g. SUC x
▶ infix notation, e. g. x + y
▶ quantifier notation, e. g. ∀x. P x means (∀) (λx. P x)

infix and quantifier notation can be turned into prefix notation
Example: (+) x y and $+ x y are the same as x + y

quantifiers of the same type don’t need to be repeated
Example: ∀x y. P x y is short for ∀x. ∀y. P x y

there is special syntax for some functions
Example: if c then v1 else v2 is nice syntax for COND c v1 v2

associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

56 / 70

Creating Terms

Term Parser

Use special quotation provided by unquote.

Operator Precedence

It is easy to misjudge the binding strength of certain operators. When in
doubt, use parentheses.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

57 / 70

Creating Terms II

Parser Syntax Funs
‘‘:bool‘‘ mk type ("bool", []) or bool type of Booleans
‘‘T‘‘ mk const ("T", bool) or T term true
‘‘~b‘‘ mk neg (negation of

mk var ("b", bool)) Boolean var b
‘‘... /\ ...‘‘ mk conj (..., ...) conjunction
‘‘... \/ ...‘‘ mk disj (..., ...) disjunction
‘‘... ==> ...‘‘ mk imp (..., ...) implication
‘‘... = ...‘‘ mk eq (..., ...) equality
‘‘... <=> ...‘‘ mk eq (..., ...) equivalence
‘‘... <> ...‘‘ mk neg (mk eq (..., ...)) negated eq.

58 / 70

Inference Rules for Equality

⊢ t = t
REFL

Γ ⊢ s = t
x not free in Γ

Γ ⊢ λx . s = λx .t
ABS

Γ ⊢ s = t
∆ ⊢ u = v
types fit

Γ ∪∆ ⊢ s(u) = t(v)
MK COMB

Γ ⊢ s = t

Γ ⊢ t = s
GSYM

Γ ⊢ s = t
∆ ⊢ t = u

Γ ∪∆ ⊢ s = u
TRANS

Γ ⊢ p ⇔ q ∆ ⊢ p

Γ ∪∆ ⊢ q
EQ MP

⊢ (λx . t)v = t[v/x]
BETA CONV

59 / 70

Inference Rules for free Variables

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE

60 / 70

Inference Rules for Implication

Γ ⊢ p =⇒ q
∆ ⊢ p

Γ ∪∆ ⊢ q
MP, MATCH MP

Γ ⊢ p = q

Γ ⊢ p =⇒ q
Γ ⊢ q =⇒ p

EQ IMP RULE

Γ ⊢ p =⇒ q
∆ ⊢ q =⇒ p

Γ ∪∆ ⊢ p = q
IMP ANTISYM RULE

Γ ⊢ p =⇒ q
∆ ⊢ q =⇒ r

Γ ∪∆ ⊢ p =⇒ r
IMP TRANS

Γ ⊢ p

Γ− {q} ⊢ q =⇒ p
DISCH

Γ ⊢ q =⇒ p

Γ ∪ {q} ⊢ p
UNDISCH

Γ ⊢ p =⇒ F

Γ ⊢ ~p
NOT INTRO

Γ ⊢ ~p
Γ ⊢ p =⇒ F

NOT ELIM

61 / 70

Inference Rules for Conjunction / Disjunction

Γ ⊢ p ∆ ⊢ q

Γ ∪∆ ⊢ p ∧ q
CONJ

Γ ⊢ p ∧ q

Γ ⊢ p
CONJUNCT1

Γ ⊢ p ∧ q

Γ ⊢ q
CONJUNCT2

Γ ⊢ p

Γ ⊢ p ∨ q
DISJ1

Γ ⊢ q

Γ ⊢ p ∨ q
DISJ2

Γ ⊢ p ∨ q
∆1 ∪ {p} ⊢ r
∆2 ∪ {q} ⊢ r

Γ ∪∆1 ∪∆2 ⊢ r
DISJ CASES

62 / 70

Inference Rules for Quantifiers

Γ ⊢ p x not free in Γ

Γ ⊢ ∀x . p
GEN

Γ ⊢ ∀x . p
Γ ⊢ p[u/x]

SPEC

Γ ⊢ p[u/x]

Γ ⊢ ∃x . p
EXISTS

Γ ⊢ ∃x . p
∆ ∪ {p[u/x]} ⊢ r

u not free in Γ,∆, p and r

Γ ∪∆ ⊢ r
CHOOSE

63 / 70

Forward Proofs

axioms and inference rules are used to derive theorems

this method is called forward proof
▶ one starts with basic building blocks
▶ one moves step by step forward
▶ finally the theorem one is interested in is derived

one can also implement custom proof tools

64 / 70

Forward Proofs — Example I

Let’s prove ∀p. p =⇒ p.

val IMP_REFL_THM = let

val tm1 = ‘‘p:bool‘‘;

val thm1 = ASSUME tm1;

val thm2 = DISCH tm1 thm1;

in

GEN tm1 thm2

end

fun IMP_REFL t =

SPEC t IMP_REFL_THM;

> val tm1 = ‘‘p‘‘: term

> val thm1 = [p] |- p: thm

> val thm2 = |- p ==> p: thm

> val IMP_REFL_THM =

|- !p. p ==> p: thm

> val IMP_REFL =

fn: term -> thm

65 / 70

Forward Proofs — Example II

Let’s prove ∀P v . (∃x . (x = v) ∧ P x) ⇐⇒ P v .

val tm_v = ‘‘v:’a‘‘;

val tm_P = ‘‘P:’a -> bool‘‘;

val tm_lhs = ‘‘?x. (x = v) /\ P x‘‘

val tm_rhs = mk_comb (tm_P, tm_v);

val thm1 = let

val thm1a = ASSUME tm_rhs;

val thm1b =

CONJ (REFL tm_v) thm1a;

val thm1c =

EXISTS (tm_lhs, tm_v) thm1b

in

DISCH tm_rhs thm1c

end

> val thm1a = [P v] |- P v: thm

> val thm1b =

[P v] |- (v = v) /\ P v: thm

> val thm1c =

[P v] |- ?x. (x = v) /\ P x

> val thm1 = [] |-

P v ==> ?x. (x = v) /\ P x: thm

66 / 70

Forward Proofs — Example II cont.

val thm2 = let

val thm2a =

ASSUME ‘‘(u:’a = v) /\ P u‘‘

val thm2b = AP_TERM tm_P

(CONJUNCT1 thm2a);

val thm2c = EQ_MP thm2b

(CONJUNCT2 thm2a);

val thm2d =

CHOOSE (‘‘u:’a‘‘,

ASSUME tm_lhs) thm2c

in

DISCH tm_lhs thm2d

end

val thm3 = IMP_ANTISYM_RULE thm2 thm1

val thm4 = GENL [tm_P, tm_v] thm3

> val thm2a = [(u = v) /\ P u] |-

(u = v) /\ P u: thm

> val thm2b = [(u = v) /\ P u] |-

P u <=> P v

> val thm2c = [(u = v) /\ P u] |-

P v

> val thm2d = [?x. (x = v) /\ P x] |-

P v

> val thm2 = [] |-

?x. (x = v) /\ P x ==> P v

> val thm3 = [] |-

?x. (x = v) /\ P x <=> P v

> val thm4 = [] |- !P v.

?x. (x = v) /\ P x <=> P v

67 / 70

Forward Proofs — Example 3

val exp_term = ‘‘!p q r. (p /\ q ==> r) <=>

(p ==> q ==> r)‘‘;

val curry_thm =

let val ab = ASSUME ‘‘p /\ q ==> r‘‘;

val p = ASSUME ‘‘p:bool‘‘;

val q = ASSUME ‘‘q:bool‘‘;

val pq = CONJ p q;

val r = MP ab pq;

in

DISCH ‘‘p /\ q ==> r‘‘

(DISCH ‘‘p:bool‘‘

(DISCH ‘‘q:bool‘‘ r))

end;

> val ab = [p /\ q ==> r]

|- p /\ q ==> r: thm

> val p = [p] |- p: thm

> val q = [q] |- q: thm

> val pq = [p, q] |- p /\ q: thm

> val r = [p, q, p /\ q ==> r]

|- r: thm

> val curry_thm =

[] |- (p /\ q ==> r) ==>

p ==> q ==> r: thm

68 / 70

Forward Proofs — Example 3 cont.

val uncurry_thm =

let val imp = ASSUME ‘‘p ==> q ==> r‘‘;

val pq = ASSUME ‘‘p /\ q‘‘;

val p = CONJUNCT1 pq;

val q = CONJUNCT2 pq;

val r = MP (MP imp p) q;

in

DISCH ‘‘p ==> q ==> r‘‘

(DISCH ‘‘p /\ q‘‘ r)

end;

val exp_thm =

GEN_ALL (IMP_ANTISYM_RULE curry_thm

uncurry_thm);

> val imp = [p ==> q ==> r]

|- p ==> q ==> r: thm

> val pq = [p /\ q] |- p /\ q: thm

> val p = [p /\ q] |- p: thm

> val q = [p /\ q] |- q: thm

> val r = [p /\ q, p ==> q ==> r]

|- r: thm

> val uncurry_thm =

[] |- (p ==> q ==> r) ==>

p /\ q ==> r: thm

69 / 70

Forward Proofs — Example 4

val noncontr_term = ‘‘!p. ~(p /\ ~p)‘‘;

val noncontr_thm =

let val contr = ASSUME ‘‘p /\ ~p‘‘;

val p = CONJUNCT1 contr;

val np = CONJUNCT2 contr;

val np_imp = NOT_ELIM np;

val f = MP np_imp p;

val contr_imp =

DISCH ‘‘p /\ ~p‘‘ f;

in

GEN_ALL (NOT_INTRO contr_imp)

end

> val contr = [p /\ ~p] |- p /\ ~p: thm

> val p = [p /\ ~p] |- p: thm

> val np = [p /\ ~p] |- ~p: thm

> val np_imp = [p /\ ~p] |- p ==> F: thm

> val f = [p /\ ~p] |- F: thm

> val contr_imp =

[] |- p /\ ~p ==> F: thm

> val noncontr_thm =

[] |- !p. ~(p /\ ~p): thm

70 / 70

	Basic HOL4 Usage
	Forward Proofs
	Term Syntax
	Inference Rules
	Forward Proofs

