
This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem
Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:

▶ Pablo Buiras (https://people.kth.se/~buiras/)

▶ Arve Gengelbach (https://people.kth.se/~arveg/)

▶ Karl Palmskog (https://setoid.com)

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://people.kth.se/~arveg/
https://setoid.com


Part XI

Basic Definitions



Definitional Extensions

there are conservative definition principles for types and constants

conservative means that all theorems that can be proved in extended
theory can also be proved in the original one

however, such extensions make the theory more comfortable

definitions introduce no new inconsistencies

the HOL community has a very strong tradition of a purely
definitional approach

3 / 42



Axiomatic Extensions

axioms are a different approach

they allow postulating arbitrary properties, i. e. extending the logic
with arbitrary theorems

this approach might introduce new inconsistencies

in HOL4, axioms are rarely needed

using definitions is considered more elegant and proper (“honest toil”)

it is hard to keep track of axioms

use custom axioms only if you really know what you are doing

4 / 42



Oracles

oracles are families of axioms

however, they are used differently than axioms

they are used to enable usage of external tools and knowledge

you might want to use an external automated prover

this external tool acts as an oracle
▶ it provides answers
▶ it does not explain or justify these answers

you don’t know whether this external tool might be buggy

all theorems proved via it are tagged with a special oracle-tag

tags are propagated

this allows keeping track of everything depending on the correctness
of this tool

5 / 42



Oracles II

Common oracle-tags
▶ DISK THM — theorem was written to disk and read again
▶ HolSatLib — proved by MiniSat
▶ HolSmtLib — proved by external SMT solver
▶ fast proof — proof was skipped to compile a theory rapidly
▶ cheat — we cheated :-)

cheating via, e. g. , the cheat tactic means skipping proofs

it can be helpful during proof development
▶ test whether some lemma allows you to finish the proof
▶ skip lengthy but boring cases and focus on critical parts first
▶ experiment with exact form of invariants
▶ . . .

cheats should be removed at a reasonable pace

HOL4 warns about cheats and skipped proofs

6 / 42



Pitfalls of Definitional Approach

definitions can’t introduce new inconsistencies

they force you to state all assumed properties at one location

however, you still need to be careful:
▶ Is your definition really expressing what you had in mind?
▶ Does your formalisation correspond to the real world artefact?
▶ How can you convince others that this is the case?

we will discuss methods to deal with this later in this course:
▶ formal sanity
▶ reduction theorems
▶ conformance testing
▶ code review
▶ comments, good names, clear coding style
▶ . . .

this is complex and needs a lot of effort in general

7 / 42



Specifications

HOL4 allows to introduce new constants with certain properties,
provided the existence of such constants has been shown

Specification of EVEN and ODD
> EVEN ODD EXISTS

val it = |- ?even odd. even 0 /\ ~odd 0 /\ (!n. even (SUC n) <=> odd n) /\

(!n. odd (SUC n) <=> even n)

> val EO SPEC = new specification ("EO SPEC", ["EVEN", "ODD"], EVEN ODD EXISTS);

val EO SPEC = |- EVEN 0 /\ ~ODD 0 /\ (!n. EVEN (SUC n) <=> ODD n) /\

(!n. ODD (SUC n) <=> EVEN n)

new specification is a convenience wrapper
▶ it uses existential quantification instead of Hilbert’s choice
▶ deals with pair syntax
▶ stores resulting definitions in theory

new specification captures the underlying principle nicely

8 / 42



Definitions

special case: new constant defined by equality

Specification with Equality
> double_EXISTS

val it =

|- ?double. (!n. double n = (n + n))

> val double_def = new_specification ("double_def", ["double"], double_EXISTS);

val double_def =

|- !n. double n = n + n

there is a specialised methods for such simple definitions

Non Recursive Definitions
> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ‘‘DOUBLE n = n + n‘‘)

val DOUBLE_DEF =

|- !n. DOUBLE n = n + n

9 / 42



Restrictions for Definitions

all variables occurring on right-hand-side (RHS) need to be arguments

▶ e. g. new definition (..., ‘‘F n = n + m‘‘) fails
▶ m is free on RHS

all type variables occurring on RHS need to occur on LHS
▶ e. g. new definition ("IS FIN TY",

‘‘IS FIN TY = FINITE (UNIV : ’a set)‘‘) fails
▶ IS FIN TY would lead to inconsistency
▶ |- FINITE (UNIV : bool set)
▶ |- ~FINITE (UNIV : num set)
▶ T <=> FINITE (UNIV:bool set) <=>

IS FIN TY <=>

FINITE (UNIV:num set) <=> F
▶ therefore, such definitions can’t be allowed

10 / 42



Underspecified Functions

function specification do not need to define the function precisely

multiple different functions satisfying one spec are possible

functions resulting from such specs are called underspecified

underspecified functions are still total, one just lacks knowledge

one common application: modelling partial functions
▶ functions like e. g. HD and TL are total
▶ they are defined for empty lists
▶ however, it is not specified, which value they have for empty lists
▶ only known: HD [] = HD [] and TL [] = TL []

val MY_HD_EXISTS = prove (‘‘?hd. !x xs. (hd (x::xs) = x)‘‘, ...);

val MY_HD_SPEC =

new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

11 / 42



Primitive Type Definitions

HOL4 allows introducing non-empty subtypes of existing types

a predicate P : ty -> bool describes a subset of an existing type ty

ty may contain type variables

only non-empty types are allowed

therefore a non-emptyness proof ex-thm of form ?e. P e is needed

new type definition (op-name, ex-thm) then introduces a new
type op-name specified by P

12 / 42



Primitive Type Definitions - Example 1

lets try to define a type dlist of lists containing no duplicates

predicate ALL DISTINCT : ’a list -> bool is used to define it

easy to prove theorem dlist exists: |- ?l. ALL DISTINCT l

val dlist TY DEF = new type definitions("dlist",

dlist exists) defines a new type ’a dlist and returns a theorem

|- ?(rep :’a dlist -> ’a list).

TYPE_DEFINITION ALL_DISTINCT rep

rep is a function taking a ’a dlist to the list representing it
▶ rep is injective
▶ a list satisfies ALL DISTINCT iff there is a corresponding dlist

13 / 42



Primitive Type Definitions - Example 2

define new type bijections can be used to define bijections
between old and new type

> define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",

REP="rep_dlist", tyax=dlist_TY_DEF}

val it =

|- (!a. abs_dlist (rep_dlist a) = a) /\

(!r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))

other useful theorems can be automatically proved by
▶ prove abs fn one one
▶ prove abs fn onto
▶ prove rep fn one one
▶ prove rep fn onto

14 / 42



Primitive Definition Principles Summary

primitive definition principles are easily explained

they lead to conservative extensions

however, they are cumbersome to use

LCF approach allows implementing more convenient definition tools
▶ Datatype package
▶ TFL (Total Functional Language) package
▶ IndDef (Inductive Definition) package
▶ quotientLib Quotient Types Library
▶ ...

15 / 42



Functional Programming

the Datatype package allows to define datatypes conveniently

the TFL package allows to define (mutually recursive) functions

the EVAL conversion allows evaluating those definitions

this gives many HOL4 developments the feeling of a functional
program

there is really a close connection between functional programming and
definitions in HOL4

▶ functional programming design principles apply
▶ EVAL is a great way to test quickly, whether your definitions are

working as intended

more details on these connections later in the context of the CakeML
language and compiler

16 / 42



Functional Programming Example

> Datatype ‘mylist = E | L ’a mylist‘

val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs))‘

Definition has been stored under "mylen def"

val it =

|- (mylen E = 0) /\ !x xs. mylen (L x xs) = SUC (mylen xs):

thm

> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))‘‘

val it =

|- mylen (L 2 (L 3 (L 1 E))) = 3:

thm

17 / 42



Datatype Package

the Datatype package allows to define SML style datatypes easily

there is support for
▶ algebraic datatypes
▶ record types
▶ mutually recursive types
▶ ...

many constants are automatically introduced
▶ constructors
▶ case-split constant
▶ size function
▶ field-update and accessor functions for records
▶ ...

many theorems are derived and stored in current theory
▶ injectivity and distinctness of constructors
▶ dichotomy and structural induction theorems
▶ rewrites for case-split, size and record update functions
▶ ...

18 / 42



Datatype Package - Example I

Tree Datatype in SML
datatype (’a,’b) btree = Leaf of ’a

| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL4
Datatype ‘btree = Leaf ’a

| Node btree ’b btree‘

Tree Datatype in HOL4 — Deprecated Syntax
Hol_datatype ‘btree = Leaf of ’a

| Node of btree => ’b => btree‘

19 / 42



Datatype Package - Example I - Derived Theorems 1

btree distinct
|- !a2 a1 a0 a. Leaf a <> Node a0 a1 a2

btree 11
|- (!a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\

(!a0 a1 a2 a0’ a1’ a2’.

(Node a0 a1 a2 = Node a0’ a1’ a2’) <=>

(a0 = a0’) /\ (a1 = a1’) /\ (a2 = a2’))

btree nchotomy

|- !bb. (?a. bb = Leaf a) \/ (?b b1 b0. bb = Node b b1 b0)

btree induction
|- !P. (!a. P (Leaf a)) /\

(!b b0. P b /\ P b0 ==> !b1. P (Node b b1 b0)) ==>

!b. P b

20 / 42



Datatype Package - Example I - Derived Theorems 2

btree size def
|- (!f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\

(!f f1 a0 a1 a2.

btree_size f f1 (Node a0 a1 a2) =

1 + (btree_size f f1 a0 + (f1 a1 + btree_size f f1 a2)))

btree case def
|- (!a f f1. btree_CASE (Leaf a) f f1 = f a) /\

(!a0 a1 a2 f f1. btree_CASE (Node a0 a1 a2) f f1 = f1 a0 a1 a2)

btree case cong

|- !M M’ f f1.

(M = M’) /\ (!a. (M’ = Leaf a) ==> (f a = f’ a)) /\

(!a0 a1 a2.

(M’ = Node a0 a1 a2) ==> (f1 a0 a1 a2 = f1’ a0 a1 a2)) ==>

(btree_CASE M f f1 = btree_CASE M’ f’ f1’)

21 / 42



Datatype Package - Example II

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

Enumeration type in HOL4
Datatype ‘my_enum = E1 | E2 | E3‘

22 / 42



Datatype Package - Example II - Derived Theorems

my enum nchotomy

|- !P. P E1 /\ P E2 /\ P E3 ==> !a. P a

my enum distinct

|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my enum2num thm

|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3 = 2)

my enum2num num2my enum

|- !r. r < 3 <=> (my_enum2num (num2my_enum r) = r)

23 / 42



Datatype Package - Example III

Record type in SML
type rgb = { r : int, g : int, b : int }

Record type in HOL4
Datatype ‘rgb = <| r : num; g : num; b : num |>‘

24 / 42



Datatype Package - Example III - Derived Theorems

rgb component equality

|- !r1 r2. (r1 = r2) <=>

(r1.r = r2.r) /\ (r1.g = r2.g) /\ (r1.b = r2.b)

rgb nchotomy

|- !rr. ?n n0 n1. rr = rgb n n0 n1

rgb r fupd

|- !f n n0 n1. rgb n n0 n1 with r updated_by f = rgb (f n) n0 n1

rgb updates eq literal

|- !r n1 n0 n.

r with <|r := n1; g := n0; b := n|> = <|r := n1; g := n0; b := n|>

25 / 42



Datatype Package - Example IV
nested record types are not allowed

however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML
datatype file = Text of string

| Dir of {owner : string ,

files : (string * file) list}

Not Supported Nested Record Type Example in HOL4
Datatype ‘file = Text string

| Dir <| owner : string ;

files : (string # file) list |>‘

Filesystem Datatype - Mutual Recursion in HOL4
Datatype ‘file = Text string

| Dir directory

;

directory = <| owner : string ;

files : (string # file) list |>‘

26 / 42



Datatype Package - No support for Co-Algebraic Types

there is no support for co-algebraic (“infinite”) types

the Datatype package could be extended to do so

other systems like Isabelle/HOL provide high-level methods for
defining such types

Co-algebraic Type Example in SML — Lazy Lists
datatype ’a lazylist = Nil

| Cons of (’a * (unit -> ’a lazylist))

27 / 42



Datatype Package - Discussion

Datatype package allows to define many useful datatypes

however, there are many limitations
▶ some types cannot be defined in HOL4, e. g. , empty types
▶ some types are not supported, e. g. co-algebraic types
▶ there are bugs (currently, e. g. , some trouble with certain mutually

recursive definitions)

biggest restrictions in practice (in my opinion and my line of work)
▶ no support for co-algebraic datatypes
▶ no nested record datatypes

depending on datatype, different sets of useful lemmas are derived

most important ones are added to TypeBase
▶ tools like Induct on, Cases on use them
▶ there is support for pattern matching

28 / 42



Total Functional Language (TFL) package

TFL package implements support for terminating functional definitions

Define defines functions from high-level descriptions

there is support for pattern matching

look and feel is like function definitions in SML

based on well-founded recursion principle

Define is the most common way for definitions in HOL4

29 / 42



Define - Initial Examples

Simple Definitions
> val DOUBLE_def = Define ‘DOUBLE n = n + n‘

val DOUBLE_def =

|- !n. DOUBLE n = n + n:

thm

> val MY_LENGTH_def = Define ‘(MY_LENGTH [] = 0) /\

(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs))‘

val MY_LENGTH_def =

|- (MY_LENGTH [] = 0) /\ !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

thm

> val MY_APPEND_def = Define ‘(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys = x :: (MY_APPEND xs ys))‘

val MY_APPEND_def =

|- (!ys. MY_APPEND [] ys = ys) /\

(!x xs ys. MY_APPEND (x::xs) ys = x::MY_APPEND xs ys):

thm

30 / 42



Define discussion

Define feels like a function definition in HOL4

it can be used to define “terminating” recursive functions

Define is implemented by a large, non-trivial piece of SML code

it uses many heuristics

outcome of Define is sometimes hard to predict

the input descriptions are only hints
▶ the produced function and the definitional theorem might be different
▶ in simple examples, quantifiers added
▶ pattern compilation takes place
▶ earlier “conjuncts” have precedence

31 / 42



Define - More Examples

> val MY_HD_def = Define ‘MY_HD (x :: xs) = x‘

val MY_HD_def = |- !x xs. MY_HD (x::xs) = x : thm

> val IS_SORTED_def = Define ‘

(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\

(IS_SORTED _ = T)‘

val IS_SORTED_def =

|- (!xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\

(IS_SORTED [] <=> T) /\ (!v. IS_SORTED [v] <=> T)

> val EVEN_def = Define ‘(EVEN 0 = T) /\ (ODD 0 = F) /\

(EVEN (SUC n) = ODD n) /\ (ODD (SUC n) = EVEN n)‘

val EVEN_def =

|- (EVEN 0 <=> T) /\ (ODD 0 <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\

(!n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ZIP = [])‘

val ZIP_def =

|- (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\

(!v1. ZIP [] v1 = []) /\ (!v4 v3. ZIP (v3::v4) [] = []) : thm

32 / 42



Primitive Definitions

Define introduces (if needed) the function using WFREC

intended definition derived as a theorem

the theorems are stored in current theory

usually, one never needs to look at it

Examples
val IS_SORTED_primitive_def =

|- IS_SORTED =

WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::xs))

(\IS_SORTED a.

case a of

[] => I T

| [x1] => I T

| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

|- !R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x

|- !f R x. RESTRICT f R x = (\y. if R y x then f y else ARB)

33 / 42



Structural Induction Theorems

Define automatically defines induction theorems

these theorems are stored in current theory with suffix ind

use DB.fetch "-" "something ind" to retrieve them

these induction theorems are useful to reason about corresponding
recursive functions

Example
val IS_SORTED_ind = |- !P.

((!x1 x2 xs. P (x2::xs) ==> P (x1::x2::xs)) /\

P [] /\

(!v. P [v])) ==>

!v. P v

34 / 42



Other Induction Theorems

there are many induction theorems in HOL4

Example: complete induction principle

|- !P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n
▶ besides datatype definitions, recursive relation definitions also give rise

to induction theorems
▶ many are manually defined, e. g. , proved from other induction theorems

Examples

|- !P. P [] /\ (!l. P l ==> !x. P (SNOC x l)) ==> !l. P l

|- !P. P FEMPTY /\

(!f. P f ==> !x y. x NOTIN FDOM f ==> P (f |+ (x,y))) ==> !f. P f

|- !P. P {} /\

(!s. FINITE s /\ P s ==> !e. e NOTIN s ==> P (e INSERT s)) ==>

!s. FINITE s ==> P s

|- !R P. (!x y. R x y ==> P x y) /\ (!x y z. P x y /\ P y z ==> P x z) ==>

!u v. R+ u v ==> P u v

35 / 42



Define failing

Define might fail for various reasons to define a function
▶ such a function cannot be defined in HOL4
▶ such a function can be defined, but not via the methods used by TFL
▶ TFL can define such a function, but its heuristics are too weak and

user guidance is required
▶ there is a bug in HOL4

termination is an important concept for Define

it is easy to misunderstand termination in the context of HOL4

we need to understand what is meant by termination

36 / 42



Termination in HOL4

in SML it is natural to talk about termination of functions

in the HOL4 logic there is no concept of execution

thus, there is no concept of termination in HOL4

3 characterisations of a function f : num -> num

▶ |- !n. f n = 0

▶ |- (f 0 = 0) /\ !n. (f (SUC n) = f n)

▶ |- (f 0 = 0) /\ !n. (f n = f (SUC n))

Is f terminating? All 3 theorems are equivalent.

37 / 42



Termination in HOL4 II

it is useful to think in terms of termination

the TFL package implements heuristics to define functions that would
terminate in SML

the TFL package uses well-founded recursion

the required well-founded relation corresponds to a termination proof

therefore, it is very natural to think of Define searching a
termination proof

important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions

38 / 42



Termination in HOL4 III

one can define “non-terminating” functions in HOL4

however, one cannot do so (easily) with Define

Definition of WHILE in HOL4
|- !P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order
There is no “execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+1) in 0)

Unsound Definitions
A function f : num -> num with the following property cannot be defined in HOL4 unless
HOL4 has an inconsistancy:

!n. f n = ((f n) + 1)

Such a function would allow proving 0 = 1.

39 / 42



Alternative Syntax for Definitions and Theorems

HOL4 syntax for definitions and theorems is verbose and requires
explicit quoting

Kananaskis-13 introduced a (shallow) less verbose layer on top

Classic Definition Syntax

val num2boolList_def = Define ‘

(num2boolList 0 = []) /\

(num2boolList 1 = []) /\

(num2boolList n = (EVEN n) :: num2boolList (n DIV 2))‘;

Alternative Definition Syntax

Definition num2boolList_def:

(num2boolList 0 = []) /\

(num2boolList 1 = []) /\

(num2boolList n = (EVEN n) :: num2boolList (n DIV 2))

End

40 / 42



Alternative Syntax for Definitions and Theorems II

Classic Theorem Syntax

val num2boolList_REWRS = store_thm ("num2boolList_REWRS",

‘‘(num2boolList 0 = []) /\ (num2boolList 1 = []) /\

(!n. 2 <= n ==>

((num2boolList n = (EVEN n) :: num2boolList (n DIV 2))))‘‘,

REPEAT STRIP_TAC >| [

METIS_TAC[num2boolList_def],

METIS_TAC[num2boolList_def],

‘n <> 0 /\ n <> 1‘ by DECIDE_TAC >>

METIS_TAC[num2boolList_def]

]);

41 / 42



Alternative Syntax for Definitions and Theorems III

Alternative Theorem Syntax

Theorem num2boolList_REWRS:

(num2boolList 0 = []) /\ (num2boolList 1 = []) /\

(!n. 2 <= n ==>

((num2boolList n = (EVEN n) :: num2boolList (n DIV 2))))

Proof

REPEAT STRIP_TAC >| [

METIS_TAC[num2boolList_def],

METIS_TAC[num2boolList_def],

‘n <> 0 /\ n <> 1‘ by DECIDE_TAC >>

METIS_TAC[num2boolList_def]

]

QED

42 / 42


	Basic Definitions
	Definitions, Axioms and Oracles
	Primitive Definition Principles
	Functional Programming
	Datatype Definitions
	Recursive Function Definitions
	Alternative Syntax for Definitions and Theorems


