
This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem
Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:

▶ Pablo Buiras (https://people.kth.se/~buiras/)

▶ Arve Gengelbach (https://people.kth.se/~arveg/)

▶ Karl Palmskog (https://setoid.com)

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://people.kth.se/~arveg/
https://setoid.com

Part XII

Good Definitions

Importance of Good Definitions

using good definitions is very important
▶ good definitions are vital for clarity
▶ proofs depend a lot on the form of definitions

hard to state what a good definition is

even harder to come up with good definitions

3 / 37

Importance of Good Definitions — Clarity I

HOL4 guarantees that theorems do indeed hold

However, does the theorem mean what you think it does?

you can separate your development in
▶ main theorems you care for
▶ auxiliary stuff used to derive your main theorems

it is essential to understand your main theorems

4 / 37

Importance of Good Definitions — Clarity II

Guaranteed by HOL4

proofs checked

internal, technical definitions

technical lemmas

proof tools

Manual review needed for

meaning of main theorems

meaning of definitions used
by main theorems

meaning of types used by
main theorems

5 / 37

Importance of Good Definitions — Clarity III

it is essential to understand your main theorems
▶ you need to understand all the definitions directly used
▶ you need to understand the indirectly used ones as well
▶ you need to convince others that you express the intended statement
▶ therefore, it is vital to use very simple, clear definitions

defining concepts is often the main development task

checking resulting model against real artefact is vital
▶ testing via e. g. EVAL
▶ formal sanity
▶ conformance testing

wrong models are main source of error when using HOL4

proofs, auxiliary lemmas and auxiliary definitions
▶ can be as technical and complicated as you like
▶ correctness is guaranteed by HOL4
▶ reviewers don’t need to care

6 / 37

Importance of Good Definitions — Proofs

good definitions can shorten proofs significantly

they improve maintainability

they can improve automation drastically

unluckily for proofs definitions often need to be technical

this contradicts clarity aims

7 / 37

How to come up with good definitions

unluckily, it is hard to state what a good definition is

it is even harder to come up with them
▶ there are often many competing interests
▶ a lot of experience and detailed tool knowledge is needed
▶ much depends on personal style and taste

general advice: use more than one definition
▶ in HOL4 you can derive equivalent definitions as theorems
▶ define a concept as clearly and easily as possible
▶ derive equivalent definitions for various purposes

⋆ one very close to your favourite textbook
⋆ one nice for certain types of proofs
⋆ another one good for evaluation
⋆ . . .

lessons from functional programming apply

8 / 37

Good Definitions in Functional Programming

Objectives

clarity (readability, maintainability)

performance (runtime speed, memory usage, ...)

General Advice

use the powerful type-system

use many small function definitions

encode invariants in types and function signatures

9 / 37

Good Definitions – no number encodings
many programmers familiar with C encode everything as a number

enumeration types are very cheap in SML and HOL4

use them instead

Example Enumeration Types
In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML and HOL4, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER‘;

val compare_def = Define ‘

(compare LESS lt eq gt = lt)

/\ (compare EQUAL lt eq gt = eq)

/\ (compare GREATER lt eq gt = gt) ‘;

val list_compare_def = Define ‘

(list_compare cmp [] [] = EQUAL) /\ (list_compare cmp [] l2 = LESS)

/\ (list_compare cmp l1 [] = GREATER)

/\ (list_compare cmp (x::l1) (y::l2) = compare (cmp (x:’a) y)

(* x<y *) LESS

(* x=y *) (list_compare cmp l1 l2)

(* x>y *) GREATER) ‘;

10 / 37

Good Definitions — Isomorphic Types

the type-checker is your friend
▶ it helps you find errors
▶ code becomes more robust
▶ using good types is a great way of writing self-documenting code

therefore, use many types

even use types isomorphic to existing ones

Virtual and Physical Memory Addresses
Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

val _ = Datatype ‘vaddr = VAddr num‘;

val _ = Datatype ‘paddr = PAddr num‘;

val virt_to_phys_addr_def = Define ‘

virt_to_phys_addr (VAddr a) = PAddr(translation of a)‘;

11 / 37

Good Definitions — Record Types I

often people use tuples where records would be more appropriate

using large tuples quickly becomes awkward
▶ it is easy to mix up order of tuple entries

⋆ often types coincide, so type-checker does not help

▶ no good error messages for tuples
⋆ hard to decipher type mismatch messages for long product types
⋆ hard to figure out which entry is missing at which position
⋆ non-local error messages
⋆ variable in last entry can hide missing entries

records sometimes require slightly more proof effort

however, records have many benefits

12 / 37

Good Definitions — Record Types II

using records
▶ introduces field names
▶ provides automatically defined accessor and update functions
▶ leads to better type-checking error messages

records improve readability
▶ accessors and update functions lead to shorter code
▶ field names act as documentation

records improve maintainability
▶ improved error messages
▶ much easier to add extra fields

13 / 37

Good Definitions — Encoding Invariants

try to encode as many invariants as possible in the types

this allows the type-checker to ensure them for you

you don’t have to check them manually any more

your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)
Consider the following datatype for network connections. It has many implicit invariants.

datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {

state : connection_state,

server : inet_address,

last_ping_time : time option,

last_ping_id : int option,

session_id : string option,

when_initiated : time option,

when_disconnected : time option

}

14 / 37

Good Definitions — Encoding Invariants II

Network Connections (Example by Yaron Minsky from Jane Street) II
The following definition of connection info makes the invariants explicit:

type connected = { last_ping : (time * int) option,

session_id : string };

type disconnected = { when_disconnected : time };

type connecting = { when_initiated : time };

datatype connection_state =

Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {

state : connection_state,

server : inet_address

}

15 / 37

Good Definitions in HOL4

Objectives

clarity (readability)

good for proofs

performance (good for automation, easily evaluatable, ...)

General Advice

same advice as for functional programming applies

use even smaller definitions
▶ introduce auxiliary definitions for important function parts
▶ use extra definitions for important constants
▶ ...

tiny definitions
▶ allow keeping proof state small by unfolding only needed ones
▶ allow many small lemmas
▶ improve maintainability

16 / 37

Good Definitions in HOL4 II

Technical Issues

write definitions such that they work well with HOL4’s tools

this requires you to know HOL4 well

a lot of experience is required

general advice
▶ avoid explicit case-expressions
▶ prefer curried functions

Example
val ZIP_GOOD_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ZIP _ _ = [])‘

val ZIP_BAD1_def = Define ‘ZIP xs ys = case (xs, ys) of

(x::xs, y::ys) => (x,y)::(ZIP xs ys)

| (_, _) => []‘

val ZIP_BAD2_def = Define ‘(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\

(ZIP _ = [])‘

17 / 37

Good Definitions in HOL4 III

Multiple Equivalent Definitions

satisfy competing requirements by having multiple equivalent
definitions

derive them as theorems

initial definition should be as clear as possible
▶ clarity allows simpler reviews
▶ simplicity reduces the likelihood of errors

Example - ALL DISTINCT

|- (ALL_DISTINCT [] <=> T) /\

(!h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)

|- !l. ALL_DISTINCT l <=>

(!x. MEM x l ==> (FILTER ($= x) l = [x]))

|- !ls. ALL_DISTINCT ls <=> (CARD (set ls) = LENGTH ls):

18 / 37

Formal Sanity

Formal Sanity

to ensure correctness test your definitions via e. g. EVAL

in HOL4 testing means symbolic evaluation, i. e. proving lemmas

formally proving sanity check lemmas is very beneficial
▶ they should express core properties of your definition
▶ thereby they check your intuition against your actual definitions
▶ these lemmas are often useful for following proofs
▶ using them improves robustness and maintainability of your

development

we highly recommend using formal sanity checks

19 / 37

Formal Sanity Example I

> val ALL_DISTINCT = Define ‘

(ALL_DISTINCT [] = T) /\

(ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)‘;

Example Sanity Check Lemmas
|- ALL_DISTINCT []

|- !x xs. ALL_DISTINCT (x::xs) <=> ~MEM x xs /\ ALL_DISTINCT xs

|- !x. ALL_DISTINCT [x]

|- !x xs. ~(ALL_DISTINCT (x::x::xs))

|- !l. ALL_DISTINCT (REVERSE l) <=> ALL_DISTINCT l

|- !x l. ALL_DISTINCT (SNOC x l) <=> ~MEM x l /\ ALL_DISTINCT l

|- !l1 l2. ALL_DISTINCT (l1 ++ l2) <=>

ALL_DISTINCT l1 /\ ALL_DISTINCT l2 /\ !e. MEM e l1 ==> ~MEM e l2

20 / 37

Formal Sanity Example II 1

> val ZIP_def = Define ‘

(ZIP [] ys = []) /\ (ZIP xs [] = []) /\

(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))‘

val ZIP_def =

|- (!ys. ZIP [] ys = []) /\ (!v3 v2. ZIP (v2::v3) [] = []) /\

(!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

above definition of ZIP looks straightforward

small changes cause heuristics to produce different theorems

use formal sanity lemmas to compensate

> val ZIP_def = Define ‘

(ZIP xs [] = []) /\ (ZIP [] ys = []) /\

(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))‘

val ZIP_def =

|- (!xs. ZIP xs [] = []) /\ (!v3 v2. ZIP [] (v2::v3) = []) /\

(!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys0

21 / 37

Formal Sanity Example II 2

val ZIP_def =

|- (!ys. ZIP [] ys = []) /\ (!v3 v2. ZIP (v2::v3) [] = []) /\

(!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

Example Formal Sanity Lemmas
|- (!xs. ZIP xs [] = []) /\ (!ys. ZIP [] ys = []) /\

(!y ys x xs. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

|- !xs ys. LENGTH (ZIP xs ys) = MIN (LENGTH xs) (LENGTH ys)

|- !x y xs ys. MEM (x, y) (ZIP xs ys) ==> (MEM x xs /\ MEM y ys)

|- !xs1 xs2 ys1 ys2. LENGTH xs1 = LENGTH ys1 ==>

(ZIP (xs1++xs2) (ys1++ys2) = (ZIP xs1 ys1 ++ ZIP xs2 ys2))

...

in your proofs use sanity lemmas, not original definition

this makes your development robust against
▶ small changes to the definition required later
▶ changes to Define and its heuristics
▶ bugs in function definition package

22 / 37

Part XIII

Deep and Shallow Embeddings

Deep and Shallow Embeddings

Embedding: modelling a language (guest) within another (host)

Reuses syntax, semantics, and/or implementation from host language

Avoids implementing a standalone compiler/interpreter

important design decision: deep vs. shallow embedding

Deep

AST represented by a data
type in host

Separate evaluation function
provides semantics

e. g. , HOL logic is deeply
embedded in SML (term)

Shallow

Language constructs mapped
directly to their semantics

Embeds guest semantics into
host semantics

e.g. HOL4 tactic language
shallowly embedded in SML

24 / 37

Example: Embedding of Propositional Logic I

propositional logic is a subset of the HOL logic

a shallow embedding in HOL is therefore trivial

val sh_true_def = Define ‘sh_true = T‘;

val sh_var_def = Define ‘sh_var (v:bool) = v‘;

val sh_not_def = Define ‘sh_not b = ~b‘;
val sh_and_def = Define ‘sh_and b1 b2 = (b1 /\ b2)‘;

val sh_or_def = Define ‘sh_or b1 b2 = (b1 \/ b2)‘;

val sh_implies_def = Define ‘sh_implies b1 b2 = (b1 ==> b2)‘;

Note: a shallow embedding in HOL is still a deep embedding in SML

25 / 37

Example: Embedding of Propositional Logic II

we can also define a datatype for propositional logic

this leads to a deep embedding
val _ = Datatype ‘bvar = BVar num‘

val _ = Datatype ‘prop = d_true | d_var bvar | d_not prop

| d_and prop prop | d_or prop prop

| d_implies prop prop‘;

val _ = Datatype ‘var_assignment = BAssign (bvar -> bool)‘

val VAR_VALUE_def = Define ‘VAR_VALUE (BAssign a) v = (a v)‘

val PROP_SEM_def = Define ‘

(PROP_SEM a d_true = T) /\

(PROP_SEM a (d_var v) = VAR_VALUE a v) /\

(PROP_SEM a (d_not p) = ~(PROP_SEM a p)) /\

(PROP_SEM a (d_and p1 p2) = (PROP_SEM a p1 /\ PROP_SEM a p2)) /\

(PROP_SEM a (d_or p1 p2) = (PROP_SEM a p1 \/ PROP_SEM a p2)) /\

(PROP_SEM a (d_implies p1 p2) = (PROP_SEM a p1 ==> PROP_SEM a p2))‘

26 / 37

Shallow vs. Deep Embeddings in HOL4

Shallow

uses the HOL logic directly

quick to build if host syntax
is similar

leverages binding
mechanisms and substitution

easy extension: new language
constructs

Deep

can reason about syntax

allows verified
implementations

easy extension: new
semantics

sometimes tricky to define
▶ e. g. bound variables

Important Questions for Deciding

Do I need to reason about syntax?

Do I have hard-to-define syntax like bound variables?

How much time do I have?

27 / 37

Example: Embedding of Propositional Logic III

with deep embedding one can easily formalise syntactic properties like
▶ Which variables does a propositional formula contain?
▶ Is a formula in negation-normal-form (NNF)?

with shallow embeddings
▶ syntactic concepts can’t be defined in HOL
▶ however, they can be defined in SML
▶ no proofs about them possible

val _ = Define ‘

(IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) = T) /\

(IS_NNF (d_not _) = F) /\

(IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\

(IS_NNF (d_and p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\

(IS_NNF (d_or p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\

(IS_NNF (d_implies p1 p2) = (IS_NNF p1 /\ IS_NNF p2))‘

28 / 37

Verified vs. Verifying Program

Verified Programs

are formalised in HOL

their properties have been
proven once and for all

all runs have proven
properties

are usually less sophisticated,
since they need verification

is what one wants ideally

often require deep embedding

Verifying Programs

are written in meta-language

they produce a separate
proof for each run

only certain that current run
has properties

allow more flexibility, e. g.
fancy heuristics

good pragmatic solution

shallow embedding fine

29 / 37

Summary Deep vs. Shallow Embeddings

deep embeddings require more work

they however allow reasoning about syntax
▶ induction and case-splits possible
▶ a semantic subset can be carved out syntactically

syntax sometimes hard to define for deep embeddings

combinations of deep and shallow embeddings common
▶ certain parts are deeply embedded
▶ others are embedded shallowly

30 / 37

Well-Founded Relations

a relation R : ’a -> ’a -> bool is called well-founded, iff there
are no infinite descending chains

wellfounded R = ~?f. !n. R (f (SUC n)) (f n)

Example: $< : num -> num -> bool is well-founded

if arguments of recursive calls are smaller according to well-founded
relation, the recursion terminates

this is the essence of termination proofs

31 / 37

Well-Founded Recursion

a well-founded relation R can be used to define recursive functions

this recursion principle is called WFREC in HOL4

idea of WFREC
▶ if arguments get smaller according to R, perform recursive call
▶ otherwise abort and return ARB

WFREC always defines a function

if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation

TFL uses this internally

however, this is well-hidden from the user

32 / 37

Manual Termination Proofs I

TFL uses various heuristics to find a well-founded relation

however, these heuristics may not be strong enough

in such cases the user can provide a well-founded relation manually

the most common well-founded relations are measures

measures map values to natural numbers and use the less relation
|- !(f:’a -> num) x y. measure f x y <=> (f x < f y)

all measures are well-founded: |- !f. WF (measure f)

moreover, existing well-founded relations can be combined
▶ lexicographic order LEX
▶ list lexicographic order LLEX
▶ . . .

33 / 37

Manual Termination Proofs II

if Define fails to find a termination proof, Hol defn can be used

Hol defn defers termination proofs

it derives termination conditions and sets up the function definitions

all results are packaged as a value of type defn

after calling Hol defn the defined function(s) can be used

however, the intended definition theorem has not been derived yet

to derive it, one needs to
▶ provide a well-founded relation
▶ show that termination conditions respect that relation

Defn.tprove and Defn.tgoal are intended for this

proofs usually start by providing relation via tactic WF REL TAC

34 / 37

Manual Termination Proof Example 1

> val qsort_defn = Hol_defn "qsort" ‘

(qsort ord [] = []) /\

(qsort ord (x::rst) =

(qsort ord (FILTER ($~ o ord x) rst)) ++

[x] ++

(qsort ord (FILTER (ord x) rst)))‘

val qsort_defn = HOL4 function definition (recursive)

Equation(s) :

[...] |- qsort ord [] = []

[...] |- qsort ord (x::rst) =

qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++

qsort ord (FILTER (ord x) rst)

Induction : ...

Termination conditions :

0. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

1. !rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)

2. WF R

35 / 37

Manual Termination Proof Example 2

> Defn.tgoal qsort_defn

Initial goal:

?R.

WF R /\

(!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\

(!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

> e (WF_REL_TAC ‘measure (\(, l). LENGTH l)‘)

1 subgoal :

(!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\

(!rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

> ...

36 / 37

Manual Termination Proof Example 2

> Defn.tgoal qsort_defn

Initial goal:

?R.

WF R /\

(!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\

(!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

> e (WF_REL_TAC ‘measure (\(, l). LENGTH l)‘)

1 subgoal :

(!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\

(!rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

> ...

36 / 37

Manual Termination Proof Example 3

> val (qsort_def, qsort_ind) =

Defn.tprove (qsort_defn,

WF_REL_TAC ‘measure (\(, l). LENGTH l)‘) >> ...)

val qsort_def =

|- (qsort ord [] = []) /\

(qsort ord (x::rst) =

qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++

qsort ord (FILTER (ord x) rst))

val qsort_ind =

|- !P. (!ord. P ord []) /\

(!ord x rst.

P ord (FILTER (ord x) rst) /\

P ord (FILTER ($~ o ord x) rst) ==>

P ord (x::rst)) ==>

!v v1. P v v1

37 / 37

	Good Definitions
	General Discussion
	Functional Programming
	HOL4
	Formal Sanity

	Deep and Shallow Embeddings
	Well-Foundedness and Termination Proofs

