This document is available under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license: http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the "Interactive Theorem Proving Course" by Thomas Tuerk (https://www.thomas-tuerk.de): https://github.com/thtuerk/ITP-course

This document includes additions by:

- Pablo Buiras (https://people.kth.se/~buiras/)
- Arve Gengelbach (https://people.kth.se/~arveg/)
- Karl Palmskog (https://setoid.com)

Part XII

Good Definitions

<ロ> (四) (四) (日) (日) (日)

- 12

Importance of Good Definitions

- using good definitions is very important
 - good definitions are vital for clarity
 - proofs depend a lot on the form of definitions
- hard to state what a good definition is
- even harder to come up with good definitions

- HOL4 guarantees that theorems do indeed hold
- However, does the theorem mean what you think it does?
- you can separate your development in
 - main theorems you care for
 - auxiliary stuff used to derive your main theorems
- it is essential to understand your main theorems

Importance of Good Definitions — Clarity II

Guaranteed by HOL4

- proofs checked
- internal, technical definitions
- technical lemmas
- proof tools

Manual review needed for

- meaning of main theorems
- meaning of definitions used by main theorems
- meaning of types used by main theorems

Importance of Good Definitions — Clarity III

- it is essential to understand your main theorems
 - you need to understand all the definitions directly used
 - you need to understand the indirectly used ones as well
 - you need to convince others that you express the intended statement
 - therefore, it is vital to use very simple, clear definitions
- defining concepts is often the main development task
- checking resulting model against real artefact is vital
 - testing via e. g. EVAL
 - formal sanity
 - conformance testing
- wrong models are main source of error when using HOL4
- proofs, auxiliary lemmas and auxiliary definitions
 - can be as technical and complicated as you like
 - correctness is guaranteed by HOL4
 - reviewers don't need to care

Importance of Good Definitions - Proofs

- good definitions can shorten proofs significantly
- they improve maintainability
- they can improve automation drastically
- unluckily for proofs definitions often need to be technical
- this contradicts clarity aims

How to come up with good definitions

- unluckily, it is hard to state what a good definition is
- it is even harder to come up with them
 - there are often many competing interests
 - a lot of experience and detailed tool knowledge is needed
 - much depends on personal style and taste
- general advice: use more than one definition
 - in HOL4 you can derive equivalent definitions as theorems
 - define a concept as clearly and easily as possible
 - derive equivalent definitions for various purposes
 - \star one very close to your favourite textbook
 - \star one nice for certain types of proofs
 - ★ another one good for evaluation
 - * ...
- lessons from functional programming apply

Good Definitions in Functional Programming

Objectives

- clarity (readability, maintainability)
- performance (runtime speed, memory usage, ...)

General Advice

- use the powerful type-system
- use many small function definitions
- encode invariants in types and function signatures

Good Definitions - no number encodings

- many programmers familiar with C encode everything as a number
- enumeration types are very cheap in SML and HOL4
- use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and positive integers. In SML and HOL4, it is better to use a variant type.

Good Definitions — Isomorphic Types

- the type-checker is your friend
 - it helps you find errors
 - code becomes more robust
 - using good types is a great way of writing self-documenting code
- therefore, use many types
- even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use separate types to avoid mixing them up.

```
val _ = Datatype 'vaddr = VAddr num';
val _ = Datatype 'paddr = PAddr num';
val virt_to_phys_addr_def = Define '
virt_to_phys_addr (VAddr a) = PAddr( translation of a )';
```

Good Definitions — Record Types I

- often people use tuples where records would be more appropriate
- using large tuples quickly becomes awkward
 - it is easy to mix up order of tuple entries
 - \star often types coincide, so type-checker does not help
 - no good error messages for tuples
 - * hard to decipher type mismatch messages for long product types
 - * hard to figure out which entry is missing at which position
 - ★ non-local error messages
 - ★ variable in last entry can hide missing entries
- records sometimes require slightly more proof effort
- however, records have many benefits

Good Definitions — Record Types II

using records

- introduces field names
- provides automatically defined accessor and update functions
- leads to better type-checking error messages
- records improve readability
 - accessors and update functions lead to shorter code
 - field names act as documentation
- records improve maintainability
 - improved error messages
 - much easier to add extra fields

Good Definitions — Encoding Invariants

- try to encode as many invariants as possible in the types
- this allows the type-checker to ensure them for you
- you don't have to check them manually any more
- your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.

datatype connection_state = Connected | Disconnected | Connecting;

```
type connection_info = {
  state : connection_state,
  server : inet_address,
  last_ping_time : time option,
  last_ping_id : int option,
  session_id : string option,
  when_initiated : time option,
  when_disconnected : time option
}
```

Good Definitions — Encoding Invariants II

Network Connections (Example by Yaron Minsky from Jane Street) II

The following definition of connection_info makes the invariants explicit:

type connected	= { last_ping	:	(time * int) option,				
	session_id	:	<pre>string };</pre>				
type disconnected	= { when_disconnected	:	<pre>time };</pre>				
type connecting	= { when_initiated	:	<pre>time };</pre>				
datatype connection_state =							
Connected of connected							
Disconnected of disconneted							

| Connecting of connecting;

```
type connection_info = {
  state : connection_state,
  server : inet_address
}
```

Good Definitions in HOL4

Objectives

- clarity (readability)
- good for proofs
- performance (good for automation, easily evaluatable, ...)

General Advice

- same advice as for functional programming applies
- use even smaller definitions
 - introduce auxiliary definitions for important function parts
 - use extra definitions for important constants
 - ...
- tiny definitions
 - allow keeping proof state small by unfolding only needed ones
 - allow many small lemmas
 - improve maintainability

イロン 不通 と イヨン イヨン

Good Definitions in HOL4 II

Technical Issues

- write definitions such that they work well with HOL4's tools
- this requires you to know HOL4 well
- a lot of experience is required
- general advice
 - avoid explicit case-expressions
 - prefer curried functions

Example

Good Definitions in HOL4 III

KTH

Multiple Equivalent Definitions

- satisfy competing requirements by having multiple equivalent definitions
- derive them as theorems
- initial definition should be as clear as possible
 - clarity allows simpler reviews
 - simplicity reduces the likelihood of errors

Example - ALL_DISTINCT

- |- (ALL_DISTINCT [] <=> T) /\
 (!h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)
- |- !1. ALL_DISTINCT 1 <=>
 (!x. MEM x 1 ==> (FILTER (\$= x) 1 = [x]))

|- !ls. ALL_DISTINCT ls <=> (CARD (set ls) = LENGTH ls):

Formal Sanity

Formal Sanity

- to ensure correctness test your definitions via e.g. EVAL
- in HOL4 testing means symbolic evaluation, i. e. proving lemmas
- formally proving sanity check lemmas is very beneficial
 - they should express core properties of your definition
 - thereby they check your intuition against your actual definitions
 - these lemmas are often useful for following proofs
 - using them improves robustness and maintainability of your development
- we highly recommend using formal sanity checks

Formal Sanity Example I


```
> val ALL_DISTINCT = Define '
   (ALL_DISTINCT [] = T) /\
   (ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)';
```

Example Sanity Check Lemmas

|- ALL_DISTINCT []

- |- !x xs. ALL_DISTINCT (x::xs) <=> ~MEM x xs /\ ALL_DISTINCT xs
- |- !x. ALL_DISTINCT [x]
- |- !x xs. ~(ALL_DISTINCT (x::x::xs))
- |- !1. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1
- |- !x l. ALL_DISTINCT (SNOC x l) <=> ~MEM x l /\ ALL_DISTINCT l

```
|- !11 12. ALL_DISTINCT (11 ++ 12) <=>
ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ !e. MEM e 11 ==> ~MEM e 12
```

Formal Sanity Example II 1


```
> val ZIP_def = Define '
   (ZIP [] ys = []) /\ (ZIP xs [] = []) /\
   (ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))'
```

val ZIP_def =

- |- (!ys. ZIP [] ys = []) /\ (!v3 v2. ZIP (v2::v3) [] = []) /\
 (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
 - above definition of ZIP looks straightforward
 - small changes cause heuristics to produce different theorems
 - use formal sanity lemmas to compensate

```
> val ZIP_def = Define '
   (ZIP xs [] = []) /\ (ZIP [] ys = []) /\
   (ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))'
val ZIP_def =
   |- (!xs. ZIP xs [] = []) /\ (!v3 v2. ZIP [] (v2::v3) = []) /\
   (!ys y xs x. ZIP (x::xs) (y::ys) = (x, y)::ZIP xs ys0
```

Formal Sanity Example II 2


```
val ZIP_def =
    |- (!ys. ZIP [] ys = []) /\ (!v3 v2. ZIP (v2::v3) [] = []) /\
    (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
```

Example Formal Sanity Lemmas

. . .

- in your proofs use sanity lemmas, not original definition
- this makes your development robust against
 - small changes to the definition required later
 - changes to Define and its heuristics
 - bugs in function definition package

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Part XIII

Deep and Shallow Embeddings

<ロ> (四) (四) (三) (三) (三)

æ

Deep and Shallow Embeddings

- Embedding: modelling a language (guest) within another (host)
- Reuses syntax, semantics, and/or implementation from host language
- Avoids implementing a standalone compiler/interpreter
- important design decision: deep vs. shallow embedding

Deep

- AST represented by a data type in host
- Separate evaluation function provides semantics
- e.g., HOL logic is deeply embedded in SML (term)

Shallow

- Language constructs mapped directly to their semantics
- Embeds guest semantics into host semantics
- e.g. HOL4 tactic language shallowly embedded in SML

Example: Embedding of Propositional Logic I

- propositional logic is a subset of the HOL logic
- a shallow embedding in HOL is therefore trivial

val	sh_true_def	=	Define	<pre>'sh_true = T';</pre>
val	sh_var_def	=	Define	<pre>`sh_var (v:bool) = v';</pre>
val	<pre>sh_not_def</pre>	=	Define	<pre>'sh_not b = ~b';</pre>
val	sh_and_def	=	Define	$sh_and b1 b2 = (b1 / b2);$
val	sh_or_def	=	Define	<pre>`sh_or b1 b2 = (b1 \/ b2)';</pre>
val	<pre>sh_implies_def</pre>	=	Define	<pre>'sh_implies b1 b2 = (b1 ==> b2)';</pre>

• Note: a shallow embedding in HOL is still a deep embedding in SML

Example: Embedding of Propositional Logic II

- we can also define a datatype for propositional logic

```
val _ = Datatype 'var_assignment = BAssign (bvar -> bool)'
val VAR_VALUE_def = Define 'VAR_VALUE (BAssign a) v = (a v)'
```

```
val PROP_SEM_def = Define '
  (PROP_SEM a d_true = T) /\
  (PROP_SEM a (d_var v) = VAR_VALUE a v) /\
  (PROP_SEM a (d_not p) = ~(PROP_SEM a p)) /\
  (PROP_SEM a (d_and p1 p2) = (PROP_SEM a p1 /\ PROP_SEM a p2)) /\
  (PROP_SEM a (d_or p1 p2) = (PROP_SEM a p1 \/ PROP_SEM a p2)) /\
  (PROP_SEM a (d_implies p1 p2) = (PROP_SEM a p1 ==> PROP_SEM a p2))'
```

Shallow vs. Deep Embeddings in HOL4

Shallow

- uses the HOL logic directly
- quick to build if host syntax is similar
- leverages binding mechanisms and substitution
- easy extension: new language constructs

Deep

- can reason about syntax
- allows verified implementations
- easy extension: new semantics
- sometimes tricky to define
 - e.g. bound variables

Important Questions for Deciding

- Do I need to reason about syntax?
- Do I have hard-to-define syntax like bound variables?
- How much time do I have?

Example: Embedding of Propositional Logic III

- with deep embedding one can easily formalise syntactic properties like
 - Which variables does a propositional formula contain?
 - Is a formula in negation-normal-form (NNF)?
- with shallow embeddings
 - syntactic concepts can't be defined in HOL
 - however, they can be defined in SML
 - no proofs about them possible

```
val _ = Define '
  (IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) = T) /\
  (IS_NNF (d_not _) = F) /\
  (IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\
  (IS_NNF (d_and p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
  (IS_NNF (d_or p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
  (IS_NNF (d_implies p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) '\
```

(ロ) (同) (ヨ) (ヨ) (ヨ) (000

Verified vs. Verifying Program

Verified Programs

- are formalised in HOL
- their properties have been proven once and for all
- all runs have proven properties
- are usually less sophisticated, since they need verification
- is what one wants ideally
- often require deep embedding

Verifying Programs

- are written in meta-language
- they produce a separate proof for each run
- only certain that current run has properties
- allow more flexibility, e.g. fancy heuristics
- good pragmatic solution
- shallow embedding fine

Summary Deep vs. Shallow Embeddings

- deep embeddings require more work
- they however allow reasoning about syntax
 - induction and case-splits possible
 - a semantic subset can be carved out syntactically
- syntax sometimes hard to define for deep embeddings
- combinations of deep and shallow embeddings common
 - certain parts are deeply embedded
 - others are embedded shallowly

• a relation R : 'a -> 'a -> bool is called well-founded, iff there are no infinite descending chains

wellfounded $R = \sim ?f$. !n. R (f (SUC n)) (f n)

- Example: \$< : num -> num -> bool is well-founded
- if arguments of recursive calls are smaller according to well-founded relation, the recursion terminates
- this is the essence of termination proofs

Well-Founded Recursion

- \bullet a well-founded relation R can be used to define recursive functions
- this recursion principle is called WFREC in HOL4
- idea of WFREC
 - ▶ if arguments get smaller according to R, perform recursive call
 - otherwise abort and return ARB
- WFREC always defines a function
- if all recursive calls indeed decrease according to R, the original recursive equations can be derived from the WFREC representation
- TFL uses this internally
- however, this is well-hidden from the user

Manual Termination Proofs I

- TFL uses various heuristics to find a well-founded relation
- however, these heuristics may not be strong enough
- in such cases the user can provide a well-founded relation manually
- the most common well-founded relations are measures
- measures map values to natural numbers and use the less relation
 |- !(f:'a -> num) x y. measure f x y <=> (f x < f y)</pre>
- all measures are well-founded: |- !f. WF (measure f)
- moreover, existing well-founded relations can be combined
 - lexicographic order LEX
 - list lexicographic order LLEX
 - **١**...

Manual Termination Proofs II

- if Define fails to find a termination proof, Hol_defn can be used
- Hol_defn defers termination proofs
- it derives termination conditions and sets up the function definitions
- all results are packaged as a value of type defn
- after calling Hol_defn the defined function(s) can be used
- however, the intended definition theorem has not been derived yet
- to derive it, one needs to
 - provide a well-founded relation
 - show that termination conditions respect that relation
- Defn.tprove and Defn.tgoal are intended for this
- proofs usually start by providing relation via tactic WF_REL_TAC


```
> val qsort_defn = Hol_defn "qsort" '
  (qsort ord [] = []) /\
  (qsort ord (x::rst) =
      (qsort ord (FILTER ($~ o ord x) rst)) ++
      [x] ++
      (qsort ord (FILTER (ord x) rst)))'
```

val qsort_defn = HOL4 function definition (recursive)

Induction : ...

Termination conditions :
 0. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)
 1. !rst x ord. R (ord,FILTER (\$~ o ord x) rst) (ord,x::rst)
 2. WF R

> Defn.tgoal qsort_defn

Initial goal:

?R.
 WF R /\
 (!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
 (!rst x ord. R (ord,FILTER (\$~ 0 ord x) rst) (ord,x::rst))


```
> Defn.tgoal qsort_defn
```

```
Initial goal:
?R.
WF R /\
(!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
(!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))
> e (WF_REL_TAC 'measure (\(_, 1). LENGTH 1)')
1 subgoal :
```

```
(!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\
(!rst x ord. LENGTH (FILTER (\x'. ~ord x x') rst) < LENGTH (x::rst))</pre>
```

> ...


```
> val (qsort_def, qsort_ind) =
  Defn.tprove (qsort_defn,
    WF_REL_TAC 'measure (\(_, 1). LENGTH 1)') >> ...)
val gsort_def =
|- (gsort ord [] = []) /\
   (qsort ord (x::rst) =
    qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
    qsort ord (FILTER (ord x) rst))
val gsort_ind =
|- !P. (!ord. P ord []) /\
       (!ord x rst.
          P ord (FILTER (ord x) rst) /\
          P ord (FILTER ($~ o ord x) rst) ==>
          P \text{ ord } (x::rst)) =>
       1v v1. P v v1
```