
This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem
Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:

▶ Pablo Buiras (https://people.kth.se/~buiras/)

▶ Arve Gengelbach (https://people.kth.se/~arveg/)

▶ Karl Palmskog (https://setoid.com)

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://people.kth.se/~arveg/
https://setoid.com

Part XV

Advanced Definition Principles

Relations

a relation is a function from some arguments to bool

the following example types are all types of relations:
▶ : ’a -> ’a -> bool
▶ : ’a -> ’b -> bool
▶ : ’a -> ’b -> ’c -> ’d -> bool
▶ : (’a # ’b # ’c) -> bool
▶ : bool
▶ : ’a -> bool

relations are closely related to sets
▶ R a b c <=> (a, b, c) IN {(a, b, c) | R a b c}
▶ (a, b, c) IN S <=> (\a b c. (a, b, c) IN S) a b c

3 / 25

Relations II

relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The reflexive-transitive closure of a relation R : ’a -> ’a ->

bool can be defined as the least relation RTC R that satisfies the
following inductive rules:

R x y

RTC R x y RTC R x x

RTC R x y RTC R y z

RTC R x z

if the rules are monotone, a least and a greatest fixpoint exists (by
the Knaster-Tarski theorem)

least fixpoints give rise to inductive relations

greatest fixpoints give rise to coinductive relations

4 / 25

(Co)inductive Relations in HOL4

(Co)IndDefLib provides infrastructure for defining (co)inductive
relations

given a set of rules Hol (co)reln defines (co)inductive relations

three theorems are returned and stored in current theory:
▶ a rules theorem — it states that the defined constant satisfies the rules
▶ a cases theorem — this is an equational form of the rules showing that

the defined relation is indeed a fixpoint
▶ a (co)induction theorem

additionally, a strong (co)induction theorem is stored in current theory

5 / 25

Example: Reflexive-Transitive Closure

> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln ‘

(!x y. R x y ==> RTC_REL R x y) /\

(!x. RTC_REL R x x) /\

(!x y z. RTC_REL R x y /\ RTC_REL R y z ==> RTC_REL R x z)‘

val RTC_REL_rules = |- !R.

(!x y. R x y ==> RTC_REL R x y) /\ (!x. RTC_REL R x x) /\

(!x y z. RTC_REL R x y /\ RTC_REL R y z ==> RTC_REL R x z)

val RTC_REL_cases = |- !R a0 a1.

RTC_REL R a0 a1 <=>

(R a0 a1 \/ (a1 = a0) \/ ?y. RTC_REL R a0 y /\ RTC_REL R y a1)

6 / 25

Example: Transitive Reflexive Closure II

val RTC_REL_ind = |- !R RTC_REL’.

((!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\

(!x y z. RTC_REL’ x y /\ RTC_REL’ y z ==> RTC_REL’ x z)) ==>

(!a0 a1. RTC_REL R a0 a1 ==> RTC_REL’ a0 a1)

> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"

val RTC_REL_strongind = |- !R RTC_REL’.

(!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\

(!x y z.

RTC_REL R x y /\ RTC_REL’ x y /\ RTC_REL R y z /\

RTC_REL’ y z ==>

RTC_REL’ x z) ==>

(!a0 a1. RTC_REL R a0 a1 ==> RTC_REL’ a0 a1)

7 / 25

Example: EVEN

> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln

‘(EVEN_REL 0) /\ (!n. EVEN_REL n ==> (EVEN_REL (n + 2)))‘;

val EVEN_REL_cases =

|- !a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =

|- EVEN_REL 0 /\ !n. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL’.

(EVEN_REL’ 0 /\ (!n. EVEN_REL’ n ==> EVEN_REL’ (n + 2))) ==>

(!a0. EVEN_REL a0 ==> EVEN_REL’ a0)

notice that in this example there is exactly one fixpoint

therefore, for these rules the inductive and coinductive relation
coincide

8 / 25

Example: Dummy Relations

> val (DF_rules, DF_ind, DF_cases) = Hol_reln

‘(!n. DF (n+1) ==> (DF n))‘

> val (DT_rules, DT_coind, DT_cases) = Hol_coreln

‘(!n. DT (n+1) ==> (DT n))‘

val DT_coind =

|- !DT’. (!a0. DT’ a0 ==> DT’ (a0 + 1)) ==> !a0. DT’ a0 ==> DT a0

val DF_ind =

|- !DF’. (!n. DF’ (n + 1) ==> DF’ n) ==> !a0. DF a0 ==> DF’ a0

val DT_cases = |- !a0. DT a0 <=> DT (a0 + 1):

val DF_cases = |- !a0. DF a0 <=> DF (a0 + 1):

notice that the definitions of DT and DF look like a non-terminating
recursive definition

DT is always true, i. e. |- !n. DT n

DF is always false, i. e. |- !n. ~(DF n)

9 / 25

Quotient Types

quotientLib allows to define types as quotients of existing types
with respect to partial equivalence relation

each equivalence class becomes a value of the new type

partiality allows ignoring certain values of original type

quotientLib allows to lift definitions and lemmata as well

details are technical and won’t be presented here

10 / 25

Quotient Types Example

let’s assume we have an implementation of finite sets of numbers as
binary trees with

▶ type binset
▶ binary tree invariant WF BINSET : binset -> bool
▶ constant empty binset
▶ add and member functions add : num -> binset -> binset,

mem : binset -> num -> bool

we can define a partial equivalence relation by
binset equiv b1 b2 := (

WF BINSET b1 /\ WF BINSET b2 /\

(!n. mem b1 n <=> mem b2 n))

this allows defining a quotient type of sets of numbers

functions empty binset, add and mem as well as lemmata about
them can be lifted automatically

11 / 25

Quotient Types Summary

quotient types are sometimes very useful
▶ e. g. , rational numbers are defined as a quotient type
▶ used extensively by mathematicians

there is powerful infrastructure for them

many tasks are automated

however, the details are technical and won’t be discussed here

12 / 25

Pattern Matching / Case Expressions

pattern matching ubiquitous in functional programming

pattern matching is a powerful technique

it helps to write concise, readable definitions

very handy and frequently used for interactive theorem proving

however, it is not directly supported by the HOL logic

representations in HOL4:
▶ sets of equations as produced by Define
▶ decision trees (printed as case-expressions)

13 / 25

TFL / Define

we have already used top-level pattern matches with the TFL package

Define is able to handle them
▶ all the semantic complexity is taken care of
▶ no special syntax or functions remain
▶ no special rewrite rules, reasoning tools needed afterwards

Define produces a set of equations

this is the recommended way of doing pattern matching in HOL4

Example
> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ZIP [] [] = [])‘

val ZIP_def = |- (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\

(ZIP [] [] = [])

14 / 25

Case Expressions

sometimes one does not want to use this compilation by TFL
▶ one wants to use pattern-matches somewhere nested in a term
▶ one might not want to introduce a new constant
▶ one might want to avoid using TFL for technical reasons

in such situations, case-expressions can be used

their syntax is similar to the syntax used by SML

Example
> val ZIP_def = Define ‘ZIP xs ys = case (xs, ys) of

(x::xs, y::ys) => (x,y)::(ZIP xs ys)

| ([], []) => []‘

val ZIP_def = |- !ys xs. ZIP xs ys =

case (xs,ys) of

([],[]) => []

| ([],v4::v5) => ARB

| (x::xs’,[]) => ARB

| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’

15 / 25

Case Expressions II

the datatype package defines case-constants for each datatype

the parser contains a pattern compilation algorithm

case-expressions are by the parser compiled to decision trees using
case-constants

pretty printer prints these decision trees as case-expressions again

Example
val ZIP_def = |- !ys xs. ZIP xs ys =

pair_CASE (xs,ys)

(\v v1.

list_CASE v (list_CASE v1 [] (\v4 v5. ARB))

(\x xs’. list_CASE v1 ARB (\y ys’. (x,y)::ZIP xs’ ys’))):

16 / 25

Case Expression Issues

using case expressions feels very natural to functional programmers

case-expressions allow concise, well-readable definitions

however, there are also many drawbacks

there is large, complicated code in the parser and pretty printer
▶ this is outside the kernel
▶ parsing a pretty-printed term can result in a non α-equivalent one
▶ there are bugs in this code (see e. g. Issue #416 reported 8 May 2017)

the results are hard to predict
▶ heuristics involved in creating decision tree
▶ however, it is beneficial that proofs follow this internal, volatile

structure

17 / 25

Case Expression Issues II

technical issues
▶ it is tricky to reason about decision trees
▶ rewrite rules about case-constants needs to be fetched from TypeBase

⋆ alternative srw ss often does more than wanted

▶ partially evaluated decision-trees are not pretty printed nicely any more

underspecified functions
▶ decision trees are exhaustive
▶ they list underspecified cases explicitly with value ARB
▶ this can be lengthy
▶ Define in contrast hides underspecified cases

18 / 25

Case Expression Example I

Partial Proof Script
val _ = prove (‘‘!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

((ZIP l1 l2 = []) <=> ((l1 = []) /\ (l2 = [])))‘‘,

ONCE_REWRITE_TAC [ZIP_def]

Current Goal
!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

(((case (l1,l2) of

([],[]) => []

| ([],v4::v5) => ARB

| (x::xs’,[]) => ARB

| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =

[]) <=> (l1 = []) /\ (l2 = []))

19 / 25

Case Expression Example IIa – partial evaluation

Partial Proof Script
val _ = prove (‘‘!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

((ZIP l1 l2 = []) <=> ((l1 = []) /\ (l2 = [])))‘‘,

ONCE_REWRITE_TAC [ZIP_def] >>

REWRITE_TAC[pairTheory.pair_case_def] >> BETA_TAC

Current Goal
!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

(((case l1 of

[] => (case l2 of [] => [] | v4::v5 => ARB)

| x::xs’ => case l2 of [] => ARB | y::ys’ => (x,y)::ZIP xs’ ys’) =

[]) <=> (l1 = []) /\ (l2 = []))

20 / 25

Case Expression Example IIb — following tree structure

Partial Proof Script
val _ = prove (‘‘!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

((ZIP l1 l2 = []) <=> ((l1 = []) /\ (l2 = [])))‘‘,

ONCE_REWRITE_TAC [ZIP_def] >>

Cases_on ‘l1‘ >| [

REWRITE_TAC[listTheory.list_case_def]

Current Goal
!l2.

(LENGTH [] = LENGTH l2) ==>

(((case ([],l2) of

([],[]) => []

| ([],v4::v5) => ARB

| (x::xs’,[]) => ARB

| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =

[]) <=> (l2 = []))

21 / 25

Case Expression Summary

case expressions are natural to functional programmers

they allow concise, readable definitions

however, fancy parser and pretty-printer needed
▶ trustworthiness issues
▶ proving sanity checking lemmas advisable

reasoning about case expressions can be tricky and lengthy

proofs about case expressions often hard to maintain

therefore, use top-level pattern matching via Define if possible

22 / 25

Relations and Case Expressions in Practice

Common uses of relations:
▶ well-typing relation for a programming language
▶ operational semantics reduction relation of a programming language
▶ operational semantics reduction relation of a hardware device
▶ proof system rules for a logic

Common reasoning about relations:
▶ if a program is well-typed, it never goes wrong at runtime
▶ proof system is sound and and complete
▶ whether the well-typing holds or not is decidable

23 / 25

Example: Proof System for Propositional Logic

Propositional Logic Syntax Fragment

ϕ = ϕ ∧ ϕ | p

Some Propositional Logic Proof Rules

ϕ ∧ ψ
ϕ

ANDE1
ϕ ∧ ψ
ψ

ANDE2
ϕ ψ

ϕ ∧ ψ
ANDI

See https://kth-step.github.io/itppv-course/lectures/
propositional.pdf for more detailed informal definitions that can be
directly encoded in HOL4.
Skeleton definitions in HOL4: https://github.com/kth-step/
itppv-course/tree/master/homeworks/hw6-supplementary

24 / 25

https://kth-step.github.io/itppv-course/lectures/propositional.pdf
https://kth-step.github.io/itppv-course/lectures/propositional.pdf
https://github.com/kth-step/itppv-course/tree/master/homeworks/hw6-supplementary
https://github.com/kth-step/itppv-course/tree/master/homeworks/hw6-supplementary

Example: Untyped Lambda Calculus

Lambda Calculus Syntax

t = x | λx .t | t t ′
v = λx .t

Lambda Calculus Semantics

(λx .t1)v2 → {v2/x}t1
AX APP

t1 → t ′1

t1 t → t ′1 t
CTX APP FUN

t1 → t ′1

v t1 → v t ′1
CTX APP ARG

A more detailed informal definition is available at https:
//kth-step.github.io/itppv-course/lectures/lambda.pdf.
The full HOL4 definition is available at https://github.com/kth-step/
itppv-course/tree/master/hol4-examples/untyped-lambda

25 / 25

https://kth-step.github.io/itppv-course/lectures/lambda.pdf
https://kth-step.github.io/itppv-course/lectures/lambda.pdf
https://github.com/kth-step/itppv-course/tree/master/hol4-examples/untyped-lambda
https://github.com/kth-step/itppv-course/tree/master/hol4-examples/untyped-lambda

	Advanced Definition Principles
	Inductive and Coinductive Relations
	Quotient Types
	Case Expressions

