
This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem
Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:

▶ Pablo Buiras (https://people.kth.se/~buiras/)

▶ Arve Gengelbach (https://people.kth.se/~arveg/)

▶ Karl Palmskog (https://setoid.com)

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://people.kth.se/~arveg/
https://setoid.com

Part XVI

Maintainable Proofs

Motivation

proofs are hopefully still used in a few weeks, months or even years

often the environment changes slightly during the lifetime of a proof
▶ your definitions change slightly
▶ your own lemmas change (e. g. , become more general)
▶ used libraries change
▶ HOL4 changes

⋆ automation becomes more powerful
⋆ rewrite rules in certain simpsets change
⋆ definition packages produce slightly different theorems
⋆ autogenerated variable names change
⋆ . . .

even if HOL4 and used libraries are stable, proofs often go through
several iterations

often they are adapted by someone else than the original author

therefore it is important that proofs are easily maintainable

3 / 34

Nice Properties of Proofs

maintainability is closely linked to other desirable properties of proofs

proofs should be
▶ easily understandable
▶ well-structured
▶ robust

⋆ they should be able to cope with minor changes to environment
⋆ if they fail they should do so at sensible points

▶ reusable

How can one write proofs with such properties?

as usual, there are no easy answers but plenty of good advice

4 / 34

Formatting

format your proof such that it easily understandable

make the structure of the proof very clear

show clearly where subgoals start and stop

use indentation to mark proofs of subgoals

use empty lines to separate large proofs of subgoals

use comments where appropriate

5 / 34

Formatting Example I

Bad Example Term Formatting
prove (‘‘!l1 l2. l1 <> [] ==> LENGTH l2 <

LENGTH (l1 ++ l2)‘‘,

...)

Good Example Term Formatting
prove (‘‘!l1 l2. l1 <> [] ==>

(LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

...)

6 / 34

Formatting Example II

Bad Example Subgoals
prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >>

REWRITE_TAC[] >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC)

Improved Example Subgoals

At least show when a subgoal starts and ends

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >> (

REWRITE_TAC[]

) >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC)

7 / 34

Formatting Example II 2

Good Example Subgoals

Make sure REWRITE TAC is only applied to first subgoal and proof fails, if
it does not solve this subgoal.

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >- (

REWRITE_TAC[]

) >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC)

8 / 34

Formatting Example II 3

Alternative Good Example Subgoals

Alternative good formatting using SELECT GOAL LT with explicit subgoal
selection and renaming:

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases

>~ [‘[] <> []‘]

>- REWRITE_TAC[]

>~ [‘h::t <> []‘] >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC

)

Another Bad Example Subgoals

Bad formatting using THENL

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >| [REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >> DECIDE_TAC])

9 / 34

Some basic advice

use semicolons after each declaration
▶ if exception is raised during interactive processing (e. g. , by a failing

proof), previous successful declarations are kept
▶ it sometimes leads to better error messages in case of parsing errors

use plenty of parentheses to make structure very clear

don’t ignore parser warnings
▶ especially warnings about multiple possible parse trees are likely to lead

to unstable proofs
▶ understand why such warnings occur and make sure there is no problem

format your development well
▶ use indentation
▶ use linebreaks at sensible points
▶ don’t use overly long lines
▶ . . .

don’t use open in the middle of files

lecturers’ opinion: avoid using Unicode in source files

10 / 34

KISS and Premature Optimisation

follow standard design principles
▶ KISS principle
▶ “premature optimization is the root of all evil” (Donald Knuth)

don’t try to be overly clever

simple proofs are preferable

proof-checking speed mostly unimportant

conciseness not a value in itself but desirable if it helps
▶ readability
▶ maintainability

abstraction is often desirable, but also has a price
▶ don’t use too complex, artificial definitions and lemmas

11 / 34

Too much abstraction

Too much abstraction Example
val TOO_ABSTRACT_LEMMA = prove (‘‘

!(size :’a -> num) (P : ’a -> bool) (combine : ’a -> ’a -> ’a).

(!x. P x ==> (0 < size x)) /\

(!x1 x2. size x1 + size x2 <= size (combine x1 x2)) ==>

(!x1 x2. P x1 ==> (size x2 < size (combine x1 x2)))‘‘,

...)

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

some proof using ABSTRACT_LEMMA

)

12 / 34

Too clever tactics

a common mistake is to use too clever tactics
▶ intended to work on many (sub)goals
▶ using TRY and other fancy trial and error mechanisms
▶ intended to replace multiple simple, clear tactics

typical case: a tactic containing TRY applied to many subgoals

it is often hard to see why such tactics work

if something goes wrong, they are hard to debug

general advice: don’t factor with tactics, instead use definitions and
lemmas

13 / 34

Too Clever Tactics Example I

Bad Example Subgoals
prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >> (

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC

))

Alternative Good Example Subgoals II
prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >> SIMP_TAC list_ss [])

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >| [

REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC

])

14 / 34

Too Clever Tactics Example II

Bad Example
val oadd_def = Define ‘(oadd (SOME n1) (SOME n2) = (SOME (n1 + n2))) /\

(oadd _ _ = NONE)‘;

val osub_def = Define ‘(osub (SOME n1) (SOME n2) = (SOME (n1 - n2))) /\

(osub _ _ = NONE)‘;

val omul_def = Define ‘(omul (SOME n1) (SOME n2) = (SOME (n1 * n2))) /\

(omul _ _ = NONE)‘;

val obin_NONE_TAC =

Cases_on ‘o1‘ >> Cases_on ‘o2‘ >>

SIMP_TAC std_ss [oadd_def, osub_def, omul_def];

val oadd_NONE = prove (

‘‘!o1 o2. (oadd o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

obin_NONE_TAC);

val osub_NONE = prove (

‘‘!o1 o2. (osub o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

obin_NONE_TAC);

val omul_NONE = prove (

‘‘!o1 o2. (omul o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

obin_NONE_TAC);

15 / 34

Too Clever Tactics Example II

Good Example
val obin_def = Define ‘(obin op (SOME n1) (SOME n2) = (SOME (op n1 n2))) /\

(obin _ _ _ = NONE)‘;

val oadd_def = Define ‘oadd = obin $+‘;
val osub_def = Define ‘osub = obin $-‘;
val omul_def = Define ‘omul = obin $*‘;

val obin_NONE = prove (

‘‘!op o1 o2. (obin op o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

Cases_on ‘o1‘ >> Cases_on ‘o2‘ >> SIMP_TAC std_ss [obin_def]);

val oadd_NONE = prove (

‘‘!o1 o2. (oadd o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

REWRITE_TAC[oadd_def, obin_NONE]);

val osub_NONE = prove (

‘‘!o1 o2. (osub o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

REWRITE_TAC[osub_def, obin_NONE]);

val omul_NONE = prove (

‘‘!o1 o2. (omul o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

REWRITE_TAC[omul_def, obin_NONE]);

16 / 34

Use many subgoals and lemmas

often it is beneficial to use subgoals
▶ they structure long proofs well
▶ they help keeping the proof state clean
▶ they mark clearly what one tries to proof
▶ they provide points where proofs can break sensibly

general enough subgoals should become lemmas
▶ this improves reusability
▶ proof script for main lemma becomes shorter
▶ proofs are disentangled

17 / 34

Subgoal Example

the following example is taken from exercise 5

we try to prove !l. IS WEAK SUBLIST FILTER l l

given are following definitions and lemmas

val FILTER_BY_BOOLS_def = Define ‘

FILTER_BY_BOOLS bl l = MAP SND (FILTER FST (ZIP (bl, l)))‘;

val IS_WEAK_SUBLIST_FILTER_def = Define ‘IS_WEAK_SUBLIST_FILTER l1 l2 =

?(bl : bool list). (LENGTH bl = LENGTH l1) /\ (l2 = FILTER_BY_BOOLS bl l1)‘;

val FILTER_BY_BOOLS_REWRITES = store_thm ("FILTER_BY_BOOLS_REWRITES",

‘‘(FILTER_BY_BOOLS [] [] = []) /\

(!b bl x xs. (FILTER_BY_BOOLS (b::bl) (x::xs) =

if b then x::(FILTER_BY_BOOLS bl xs) else FILTER_BY_BOOLS bl xs))‘‘,

REWRITE_TAC [FILTER_BY_BOOLS_def, ZIP, MAP, FILTER] >>

Cases_on ‘b‘ >> REWRITE_TAC [MAP]);

18 / 34

Subgoal Example II

First Version
val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

‘‘!l. IS_WEAK_SUBLIST_FILTER l l‘‘,

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

Induct_on ‘l‘ >- (

Q.EXISTS_TAC ‘[]‘ >>

SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES]

) >>

FULL_SIMP_TAC std_ss [] >>

GEN_TAC >>

Q.EXISTS_TAC ‘T::bl‘ >>

ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES])

the proof mixes properties of IS WEAK SUBLIST FILTER and
properties of FILTER BY BOOLS

it is hard to see what the main idea is

19 / 34

Subgoal Example III

the following proof separates the property of FILTER BY BOOLS as a
subgoal

the main idea becomes clearer

Subgoal Version
val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

‘‘!l. IS_WEAK_SUBLIST_FILTER l l‘‘,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

‘FILTER_BY_BOOLS (REPLICATE (LENGTH l) T) l = l‘ suffices_by (

METIS_TAC[LENGTH_REPLICATE]

) >>

Induct_on ‘l‘ >> (

ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES, REPLICATE]

))

20 / 34

Subgoal Example IV

the subgoal is general enough to justify a lemma

the structure becomes even cleaner

this improves reusability

Lemma Version
val FILTER_BY_BOOLS_REPL_T = store_thm ("FILTER_BY_BOOLS_REPL_T",

‘‘!l. FILTER_BY_BOOLS (REPLICATE (LENGTH l) T) l = l‘‘,

Induct >> ASM_REWRITE_TAC [REPLICATE, FILTER_BY_BOOLS_REWRITES, LENGTH]);

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

‘‘!l. IS_WEAK_SUBLIST_FILTER l l‘‘,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

Q.EXISTS_TAC ‘REPLICATE (LENGTH l) T‘ >>

SIMP_TAC list_ss [FILTER_BY_BOOLS_REPL_T, LENGTH_REPLICATE])

21 / 34

Avoid Autogenerated Names

many HOL4 tactics introduce new variable names
▶ Induct
▶ Cases
▶ . . .

the new names are often very artificial

even worse, generated names might change in future

proof scripts using autogenerated names are therefore
▶ hard to read
▶ potentially fragile

therefore rename variables after they have been introduced

HOL4 has multiple tactics supporting renaming

most useful is rename1 ‘pat‘, it searches for pattern and renames
vars accordingly

22 / 34

Autogenerated Names Example

Bad Example
prove (‘‘!l. 1 < LENGTH l ==> (?x1 x2 l’. l = x1::x2::l’)‘‘,

GEN_TAC >>

Cases_on ‘l‘ >> SIMP_TAC list_ss [] >>

Cases_on ‘t‘ >> SIMP_TAC list_ss [])

Good Example
prove (‘‘!l. 1 < LENGTH l ==> (?x1 x2 l’. l = x1::x2::l’)‘‘,

qx_gen_tac ‘l‘ >>

Cases_on ‘l‘ >> SIMP_TAC list_ss [] >>

rename1 ‘LENGTH l2‘ >>

Cases_on ‘l2‘ >> SIMP_TAC list_ss [])

Proof State before rename1
1 < SUC (LENGTH t) ==> ?x2 l’. t = x2::l’

Proof State after rename1
1 < SUC (LENGTH l2) ==> ?x2 l’. l2 = x2::l’

23 / 34

Tactics for Renaming

We list tactics for a finer-grained renaming compared to rename1.

THEN LT SELECT GOAL LT pats
renames all matches in list pats and moves subgoal first

qmatch goalsub rename tac ‘pat‘

match pattern to a goal’s subterm and rename accordingly

qmatch asmsub rename tac ‘pat‘

match pattern to an assumption and rename accordingly

qx gen tac ‘var‘

specialises a universal quantifier using the given name

qx choose then ‘var‘ tac thm

for an existentially quantifed thm choose the name of the witness.
Often tac is mp tac or assume tac)

24 / 34

Part XVII

ITP Support Tools

ITP Support Tools

there is a large tool ecosystem around ITPs, e. g. , for
▶ proof automation
▶ maintenance
▶ processing and generation of definitions
▶ searching large libraries

using the right tools can be crucial for productivity
▶ avoid spending hours reproving known facts
▶ generate boilerplate automatically
▶ highlight flaws in definitions early

26 / 34

Example Tool: Ott

tool for writing calculi in ASCII syntax that can be exported to HOL4,
Coq, Isabelle (and LaTeX)

https://github.com/ott-lang/ott

helpful for doing deep embeddings of languages

generates boilerplate for abstract syntax and relations

27 / 34

https://github.com/ott-lang/ott

Untyped Lambda Calculus Syntax in Ott

metavar var , x ::=

{{ isa string }} {{ coq nat }} {{ coq -equality }} {{ hol string }}

{{ tex \mathit {[[termvar]]} }} {{ com term variable }}

grammar

term , t :: ’t_’ ::= {{ com term }}

| x :: :: var {{ com variable }}

| \ x . t :: :: lam (+ bind x in t +) {{ com abstraction }}

| t t’ :: :: app {{ com application }}

| (t) :: S :: paren {{ ichl [[t]] }}

| { t / x } t’ :: M :: tsub {{ ichl (tsubst_t [[t]] [[x]] [[t’]]) }}

val , v :: ’v_’ ::= {{ com value }}

| \ x . t :: :: lam {{ com lambda }}

subrules

val <:: term

substitutions

single term var :: tsubst

28 / 34

Generated HOL4 Embedding

val _ = type_abbrev ("var", ‘‘:string ‘‘); (* term variable *)

term = (* term *)

t_var of var (* variable *)

| t_lam of var => term (* lambda *)

| t_app of term => term (* app *)

‘;

(** subrules *)

val _ = ottDefine "is_val_of_term" ‘

(is_val_of_term (t_var x) = F)

/\ (is_val_of_term (t_lam x t) = (T))

/\ (is_val_of_term (t_app t t’) = F)

‘;

(** substitutions *)

val _ = ottDefine "tsubst_term" ‘

(tsubst_term t5 x5 (t_var x) = (if x=x5 then t5 else (t_var x)))

/\ (tsubst_term t5 x5 (t_lam x t) =

t_lam x (if MEM x5 [x] then t else (tsubst_term t5 x5 t)))

/\ (tsubst_term t5 x5 (t_app t t’) =

t_app (tsubst_term t5 x5 t) (tsubst_term t5 x5 t’))

‘;

29 / 34

Untyped Lambda Calculus Semantics in Ott

defn

t1 --> t2 :: :: reduce :: ’’

{{ com $[[t1]]$ reduces to $[[t2]]$ }} by

-------------------------- :: ax_app

(\x.t1) v2 --> {v2/x}t1

t1 --> t1 ’

-------------- :: ctx_app_fun

t1 t --> t1 ’ t

t1 --> t1 ’

-------------- :: ctx_app_arg

v t1 --> v t1’

For the whole Ott definition, see:
https://github.com/ott-lang/ott/blob/master/tests/test10.ott

30 / 34

https://github.com/ott-lang/ott/blob/master/tests/test10.ott

Generated HOL4 Relation

val (Jop_rules , Jop_ind , Jop_cases) = Hol_reln ‘

(* defn reduce *)

(! (x:var) (t1:term) (v2:term) . (clause_name "ax_app ") /\

((is_val_of_term v2))

==> (* ax_app *)

((reduce (t_app (t_lam x t1) v2) (tsubst_term v2 x t1))))

/\ (! (t1:term) (t:term) (t1 ’:term) . (clause_name "ctx_app_fun ") /\

(((reduce t1 t1’)))

==> (* ctx_app_fun *)

((reduce (t_app t1 t) (t_app t1’ t))))

/\ (!(v:term) (t1:term) (t1 ’:term) . (clause_name "ctx_app_arg ") /\

((is_val_of_term v) /\

((reduce t1 t1 ’)))

==> (* ctx_app_arg *)

((reduce (t_app v t1) (t_app v t1 ’))))

‘;

For the complete generated HOL4 definition, see:
https://github.com/kth-step/itppv-course/blob/master/

hol4-examples/untyped-lambda/lambdaScript.sml

31 / 34

https://github.com/kth-step/itppv-course/blob/master/hol4-examples/untyped-lambda/lambdaScript.sml
https://github.com/kth-step/itppv-course/blob/master/hol4-examples/untyped-lambda/lambdaScript.sml

Example Tool: Lem

general tool for generating semantic definitions in ITPs

https://github.com/rems-project/lem

Ott can export Lem definitions

used in the CakeML verified compiler project

has library with many standard semantic concepts

32 / 34

https://github.com/rems-project/lem

Leveraging External Automatic Solvers

built-in automatic solvers don’t need to be trusted (more than HOL4
itself)

external solvers can still be useful to try conjectures

external solver results can be oracle-tagged and integrated into HOL4
developments

common external solver types: SAT, SMT, FOL

example external solvers: MiniSAT, Z3, Yices, CVC4, Vampire

HOL(y)hammer (see HOL4 examples) tries to get benefits of both
automatic solvers and HOL4 trust by reconstructing solver proofs
inside HOL4

TacticToe (see HOL4 examples) provides tactic-based proof search for
HOL4 based on machine-learning prediction techniques

33 / 34

https://thibaultgauthier.fr/tactictoe.html

Testing Properties (QuickCheck)

when properties to be proven are decidable when instantiated, they
can be tested

in Isabelle and Coq, there are frameworks that can test properties on
many instances and find counterexamples

in HOL4, this is possible manually through the EmitML module
1 extract all necessary code to executable language
2 generate lots of instances of datatypes
3 check desired property for all generated instances, report

successes/failures

More about EmitML can be found in the default course project description:
https://kth-step.github.io/itppv-course/homeworks/project.pdf

34 / 34

https://kth-step.github.io/itppv-course/homeworks/project.pdf

	Maintainable Proofs
	ITP Support Tools

