
This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem
Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:

▶ Pablo Buiras (https://people.kth.se/~buiras/)

▶ Arve Gengelbach (https://people.kth.se/~arveg/)

▶ Karl Palmskog (https://setoid.com)

http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://people.kth.se/~arveg/
https://setoid.com


Part XVIII

Obtaining Verified Programs



Verifying Executable Code with ITPs

Many options available:

using code extraction (to SML, OCaml, Haskell, ...)

reasoning directly about deeply embedded “real” programs using their
semantics

validating compiled binaries

using a verified compiler

...

3 / 20



Trusted Computing Bases (TCB)

what is verified vs. what is trusted?

TCB originally from security (and adversarial)

verification TCB typically includes at least
▶ hardware (processor, ISA, ...)
▶ operating system
▶ low-level system libraries

small TCB is (nearly) always preferable

4 / 20



Example: Verified Distributed System

node/network interfaces network semantics

system definition spec+proofs

extracted handler code unverified shim

executable program

5 / 20



Code Extraction

Standard ML extraction in HOL4 (EmitML module)

OCaml and Haskell in Coq

Standard ML, Scala, Haskell in Isabelle/HOL

6 / 20



EmitML Example

open EmitML basis_emitTheory;

val _ = eSML "my_theory" [

DATATYPE mydata ,

DEFN myfun1_def ,

DEFN myfun2_def ,

DEFN myfun3_def

];

7 / 20



Translation Validation of Binaries

extraction is not guaranteed (via machine-checked proofs) to preserve
program semantics

a translation validation approach can establish that generated binary
adheres to source language semantics

used to analyze binaries generated by gcc for the seL4 operating
system kernel

general approach that can be used for other tasks than compilation

8 / 20



Verified Compilation

verified compilers can directly produce machine code that is
guaranteed be consistent with program meaning

needed: hardware ISA semantics, source language semantics

usually constructed as translations between many intermediate
languages

examples: CakeML, CompCert

9 / 20



Verified Compilation Top-Level Theorem

Any binary produced by a successful evaluation of the compiler function
will either

behave exactly according to the observable behaviour of the source
semantics, or

behave the same as the source up to some point at which it
terminates with an out-of-memory error.

Typical assumptions:

external world doesn’t modify allocated memory

external procedures called by program are well-behaved

10 / 20



Purely Functional vs. Imperative Code

purely functional code usually verified by rewriting (lightweight)

imperative code usually needs Hoare logic verification (heavyweight)

reasoning about heaps is a lot of work (even with separation logic)

conjecture (X. Leroy): purely functional programs are the most
straightforward path to verified code

11 / 20



Part XIX

Introduction to CakeML



CakeML in a Nutshell

bootstrapping verified compiler for SML-like language, implemented
in HOL4

can generate machine code for MIPS, x86, x86-64, ARMv8, RISC-V

source and pre-compiled CakeML compatible with HOL4
Kananaskis-14 available online:
https://github.com/CakeML/cakeml/releases/download/v2117/cake-x64-64.tar.gz

https://github.com/CakeML/cakeml/archive/v2117.tar.gz

13 / 20

https://github.com/CakeML/cakeml/releases/download/v2117/cake-x64-64.tar.gz
https://github.com/CakeML/cakeml/archive/v2117.tar.gz


Properties of the CakeML Language

impure language in the SML family

eagerly evaluated

semantics given in functional big-step style

supports IO and FFI

all integers are unbounded

14 / 20



Syntax of CakeML vs. Standard ML

CakeML has curried Haskell-style constructor syntax

constructors in CakeML must begin with an uppercase letter

constructors must be fully applied

alpha-numeric variable and function names begin with a lowercase
letter

CakeML lacks SML’s records, functors, open and (at present)
signatures

CakeML capitalises True, False and Ref

15 / 20



Semantics of CakeML vs. Standard ML

right-to-left evaluation order

CakeML has no equality types

semantics of equality is different from SML and OCaml

multi-argument functions

16 / 20



Example CakeML Programs

Hello World:

print "Hello world !\n";

Fibonacci with argument from CLI:

fun fiba i j n = if n = 0 then i else fiba j (i+j) (n-1);

let

val v = Option.valOf (Int.fromString

(List.hd (CommandLine.arguments ())))

in

TextIO.print ((Int.toString (fiba 0 1 v)) ^ "\n")

end

handle _ => TextIO.print_err ("usage: "

^ (CommandLine.name ()) ^ " <n>\n");

17 / 20



CakeML List Functions

fun foldl f e xs =

case xs of [] => e

| (x::xs) => foldl f (f e x) xs;

fun reverse xs =

let

fun append xs ys =

case xs of [] => ys

| (x::xs) => x :: append xs ys;

fun rev xs =

case xs of [] => xs

| (x::xs) => append (rev xs) [x]

in

rev xs

end;

18 / 20



Example Using CakeML as Compiler

Download the pre-compiled CakeML, and put “hello world” program in
hello.cml:

$ make hello.cake

$ ./hello.cake

Hello world!

Compiler takes 20+ hours to bootstrap in HOL4!

19 / 20



Verifying Programs Using CakeML

imperative programs handled via monads in HOL4

proof-producing synthesis in HOL4 via translator

post-hoc verification using separation logic

See CakeML journal paper for overview:
https://cakeml.org/jfp19.pdf

20 / 20

https://cakeml.org/jfp19.pdf

	Obtaining Verified Programs
	Introduction to CakeML

