This document is available under the Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license:
http://creativecommons.org/licenses/by-sa/4.0/

This document is based on material from the “Interactive Theorem
Proving Course” by Thomas Tuerk
(https://www.thomas-tuerk.de):
https://github.com/thtuerk/ITP-course

This document includes additions by:
» Pablo Buiras (https://people.kth.se/~buiras/)
» Arve Gengelbach (https://people.kth.se/~arveg/)
» Karl Palmskog (https://setoid.com)


http://creativecommons.org/licenses/by-sa/4.0/
https://www.thomas-tuerk.de
https://github.com/thtuerk/ITP-course
https://people.kth.se/~buiras/
https://people.kth.se/~arveg/
https://setoid.com

Part XVIII

Obtaining Verified Programs

by

Sy,
EZKTHY

VETENSKAP
@8 OCH KONST 2%

) 9

T




Verifying Executable Code with ITPs

Many options available:
@ using code extraction (to SML, OCaml, Haskell, ...)

@ reasoning directly about deeply embedded “real” programs using their
semantics

@ validating compiled binaries
@ using a verified compiler

3/20



Trusted Computing Bases (TCB)

@ what is verified vs. what is trusted?
e TCB originally from security (and adversarial)

o verification TCB typically includes at least

» hardware (processor, ISA, ...)
> operating system
> low-level system libraries

e small TCB is (nearly) always preferable

4/20



Example: Verified Distributed System

node/network interfaces | network semantics |

| system definition spec+proofs

| extracted handler code | | unverified shim |

~,

| executable program |

5/20



Code Extraction

e Standard ML extraction in HOL4 (EmitML module)
@ OCaml and Haskell in Coq
e Standard ML, Scala, Haskell in Isabelle/HOL

6/20



EmitML Example

open EmitML basis_emitTheory;

val _ = eSML "my_theory" [
DATATYPE mydata,
DEFN myfunil_def,
DEFN myfun2_def,
DEFN myfun3_def
1

7/20



Translation Validation of Binaries

@ extraction is not guaranteed (via machine-checked proofs) to preserve
program semantics

@ a translation validation approach can establish that generated binary
adheres to source language semantics

@ used to analyze binaries generated by gcc for the selL4 operating
system kernel

@ general approach that can be used for other tasks than compilation

8/20



Verified Compilation

o verified compilers can directly produce machine code that is
guaranteed be consistent with program meaning

@ needed: hardware ISA semantics, source language semantics

@ usually constructed as translations between many intermediate
languages

@ examples: CakeML, CompCert

9/20



Verified Compilation Top-Level Theorem

Any binary produced by a successful evaluation of the compiler function
will either

@ behave exactly according to the observable behaviour of the source
semantics, or

@ behave the same as the source up to some point at which it
terminates with an out-of-memory error.

Typical assumptions:
@ external world doesn’t modify allocated memory

@ external procedures called by program are well-behaved

10/20



Purely Functional vs. Imperative Code

purely functional code usually verified by rewriting (lightweight)
imperative code usually needs Hoare logic verification (heavyweight)
reasoning about heaps is a lot of work (even with separation logic)

conjecture (X. Leroy): purely functional programs are the most
straightforward path to verified code

11/20



Part XIX

Introduction to CakeML

by

S
EKTH?Y

VETENSKAP
28 OCH KONST 2%

T




CakeML in a Nutshell

@ bootstrapping verified compiler for SML-like language, implemented
in HOL4

@ can generate machine code for MIPS, x86, x86-64, ARMv8, RISC-V

@ source and pre-compiled CakeML compatible with HOL4
Kananaskis-14 available online:
https://github.com/CakeML/cakeml/releases/download/v2117/cake-x64-64.tar.gz
https://github.com/CakeML/cakeml/archive/v2117.tar.gz

13/20


https://github.com/CakeML/cakeml/releases/download/v2117/cake-x64-64.tar.gz
https://github.com/CakeML/cakeml/archive/v2117.tar.gz

Properties of the CakeML Language

impure language in the SML family
eagerly evaluated

semantics given in functional big-step style
supports |0 and FFI

all integers are unbounded

14 /20



Syntax of CakeML vs. Standard ML

CakeML has curried Haskell-style constructor syntax
constructors in CakeML must begin with an uppercase letter
constructors must be fully applied

alpha-numeric variable and function names begin with a lowercase
letter

CakeML lacks SML's records, functors, open and (at present)
signatures

CakeML capitalises True, False and Ref

15/20



Semantics of CakeML vs. Standard ML

right-to-left evaluation order
CakeML has no equality types
semantics of equality is different from SML and OCaml

multi-argument functions

16 /20



Example CakeML Programs

Hello World:

print "Hello world!\n";

Fibonacci with argument from CLI:

fun fiba i j n = if n = 0 then i else fiba j (i+j) (n-1);
let
val v = Option.valOf (Int.fromString
(List.hd (CommandLine.arguments())))

in

TextIO.print ((Int.toString (fiba 0 1 v)) ~ "\n")
end
handle _ => TextIO.print_err ("usage: "

(CommandLine.name()) ~ " <n>\n");

17/20



CakeML List Functions

fun foldl f e xs =
case xs of [] => e
| (x::xs) => foldl f (f e x) xs;

fun reverse xs =
let
fun append xs ys =
case xs of [] => ys
| (x::xs) => x :: append xs ys;
fun rev xs =
case xs of [] => xs
| (x::xs) => append (rev xs) [x]
in
rev Xxs
end ;

18/20



Example Using CakeML as Compiler

Download the pre-compiled CakeML, and put “hello world” program in
hello.cml:

$ make hello.cake
$ ./hello.cake
Hello world!

Compiler takes 20+ hours to bootstrap in HOL4!

19/20



Verifying Programs Using CakeML

@ imperative programs handled via monads in HOL4
@ proof-producing synthesis in HOL4 via translator
@ post-hoc verification using separation logic

See CakeML journal paper for overview:
https://cakeml.org/jfpl9.pdf

20/20


https://cakeml.org/jfp19.pdf

	Obtaining Verified Programs
	Introduction to CakeML

