(* generated by Ott 0.33 from: src/abs.ott *)

Require Import Arith.
Require Import Bool.
Require Import List.
Require Import Ott.ott_list_core.

From Equations Require Import Equations.
From stdpp Require Import prelude strings gmap gmultiset.

#[export] Hint Resolve bool_dec : ott_coq_equality.
#[export] Hint Resolve Ascii.ascii_dec : ott_coq_equality.
#[export] Hint Resolve BinPos.Pos.eq_dec : ott_coq_equality.

ABS Definitions


Definition i : Set := nat. (*r index variables (subscripts) *)
Lemma eq_i: forall (x y : i), {x = y} + {x <> y}.
Proof.
  decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_i : ott_coq_equality.
Definition fc : Set := string. (*r function name *)
Lemma eq_fc: forall (x y : fc), {x = y} + {x <> y}.
Proof.
  decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_fc : ott_coq_equality.
Definition x : Set := string. (*r variable *)
Lemma eq_x: forall (x' y : x), {x' = y} + {x' <> y}.
Proof.
  decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_x : ott_coq_equality.
Definition fut : Set := nat. (*r future type *)
Lemma eq_fut: forall (x y : fut), {x = y} + {x <> y}.
Proof.
  decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_fut : ott_coq_equality.
Definition f : Set := string. (*r future name *)
Lemma eq_f: forall (x y : f), {x = y} + {x <> y}.
Proof.
  decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_f : ott_coq_equality.
Definition o : Set := string. (*r object name *)
Lemma eq_o: forall (x y : o), {x = y} + {x <> y}.
Proof.
  decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_o : ott_coq_equality.
Definition m : Set := string. (*r method name *)
Lemma eq_m: forall (x y : m), {x = y} + {x <> y}.
Proof.
  decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_m : ott_coq_equality.
Definition C : Set := string. (*r class name *)
Lemma eq_C: forall (x y : C), {x = y} + {x <> y}.
Proof.
  decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_C : ott_coq_equality.

Definition z : Set := Z.

Definition b : Set := bool.

Inductive t : Set := (*r ground term *)
 | t_b (b5:b) (*r boolean *)
 | t_int (z5:z) (*r integer *)
 | t_fut (fut5:fut) (*r future *).

Inductive T : Set := (*r ground type *)
 | T_bool : T
 | T_int : T.

Inductive e : Set := (*r expression *)
 | e_t (t5:t) (*r term *)
 | e_var (x5:x) (*r variable *)
 | e_fn_call (fc5:fc) (_:list e) (*r function call *)
 | e_neg (e5:e)
 | e_not (e5:e)
 | e_add (e1:e) (e2:e)
 | e_mul (e1:e) (e2:e)
 | e_eq (e1:e) (e2:e)
 | e_lt (e1:e) (e2:e).

Inductive sig : Set :=
 | sig_sig (_:list T) (T_5:T).

Inductive rhs : Set := (*r right-hand side in assignment *)
 | rhs_e (e5:e)
 | rhs_invoc (o5:o) (m5:m) (_:list e) (*r we invoke on an object directly, not by some mysterious evaluation to object identifiers *)
 | rhs_get (f5:f).

Inductive ctxv : Set :=
 | ctxv_T (T5:T)
 | ctxv_sig (sig5:sig)
 | ctxv_fut (T5:T).

Inductive stmt : Set := (*r statement *)
 | stmt_seq (stmt1:stmt) (stmt2:stmt)
 | stmt_skip : stmt
 | stmt_asgn (x5:x) (rhs5:rhs)
 | stmt_cond (e5:e) (stmt1:stmt) (stmt2:stmt)
 | stmt_loop (e5:e) (stmt5:stmt)
 | stmt_ret (e5:e).

Inductive F : Set := (*r function definition *)
 | F_fn (T_5:T) (fc5:fc) (_:list (T*x)) (e5:e).

Definition s : Type := gmap x t.

Definition G : Type := gmap x ctxv.

Inductive M : Set := (*r method definition *)
 | M_m (T_5:T) (m5:m) (_:list (T*x)) (_:list (T*x)) (stmt5:stmt).

Inductive CL : Set := (*r class definition *)
 | class (C5:C) (_:list (T*x)) (_:list M).

Definition to : Set := (option t).

Inductive P : Set := (*r program *)
 | program (_:list CL) (_:list (T*x)) (stmt5:stmt).

Inductive task : Type :=
 | tsk (stmt5:stmt) (s5:s).
induction principles
Section e_rect.

Variables
  (P_list_e : list e -> Prop)
  (P_e : e -> Prop).

Hypothesis
  (H_e_t : forall (t5:t), P_e (e_t t5))
  (H_e_var : forall (x5:x), P_e (e_var x5))
  (H_e_fn_call : forall (e_list:list e), P_list_e e_list -> forall (fc5:fc), P_e (e_fn_call fc5 e_list))
  (H_e_neg : forall (e5:e), P_e e5 -> P_e (e_neg e5))
  (H_e_not : forall (e5:e), P_e e5 -> P_e (e_not e5))
  (H_e_add : forall (e1:e), P_e e1 -> forall (e2:e), P_e e2 -> P_e (e_add e1 e2))
  (H_e_mul : forall (e1:e), P_e e1 -> forall (e2:e), P_e e2 -> P_e (e_mul e1 e2))
  (H_e_eq : forall (e1:e), P_e e1 -> forall (e2:e), P_e e2 -> P_e (e_eq e1 e2))
  (H_e_lt : forall (e1:e), P_e e1 -> forall (e2:e), P_e e2 -> P_e (e_lt e1 e2))
  (H_list_e_nil : P_list_e nil)
  (H_list_e_cons : forall (e0:e), P_e e0 -> forall (e_l:list e), P_list_e e_l -> P_list_e (cons e0 e_l)).

Fixpoint e_ott_ind (n:e) : P_e n :=
  match n as x return P_e x with
  | (e_t t5) => H_e_t t5
  | (e_var x5) => H_e_var x5
  | (e_fn_call fc5 e_list) => H_e_fn_call e_list (((fix e_list_ott_ind (e_l:list e) : P_list_e e_l := match e_l as x return P_list_e x with nil => H_list_e_nil | cons e1 xl => H_list_e_cons e1(e_ott_ind e1)xl (e_list_ott_ind xl) end)) e_list) fc5
  | (e_neg e5) => H_e_neg e5 (e_ott_ind e5)
  | (e_not e5) => H_e_not e5 (e_ott_ind e5)
  | (e_add e1 e2) => H_e_add e1 (e_ott_ind e1) e2 (e_ott_ind e2)
  | (e_mul e1 e2) => H_e_mul e1 (e_ott_ind e1) e2 (e_ott_ind e2)
  | (e_eq e1 e2) => H_e_eq e1 (e_ott_ind e1) e2 (e_ott_ind e2)
  | (e_lt e1 e2) => H_e_lt e1 (e_ott_ind e1) e2 (e_ott_ind e2)
end.

End e_rect.
Lemma eq_z: forall (x y : z), {x = y} + {x <> y}.
Proof.
  decide equality; auto with ott_coq_equality arith.
Defined.
Hint Resolve eq_z : ott_coq_equality.

Equations e_var_subst_one (e5:e) (x_ y_: x) : e := {
 e_var_subst_one (e_t t) _ _ := e_t t;
 e_var_subst_one (e_var x0) x_ y_ := if (eq_x x0 x_) then (e_var y_) else (e_var x0);
 e_var_subst_one (e_neg e0) _ _ := e_neg (e_var_subst_one e0 x_ y_);
 e_var_subst_one (e_not e0) _ _ := e_not (e_var_subst_one e0 x_ y_);
 e_var_subst_one (e_add e1 e2) _ _ := e_add (e_var_subst_one e1 x_ y_) (e_var_subst_one e2 x_ y_);
 e_var_subst_one (e_mul e1 e2) _ _ := e_mul (e_var_subst_one e1 x_ y_) (e_var_subst_one e2 x_ y_);
 e_var_subst_one (e_eq e1 e2) _ _ := e_eq (e_var_subst_one e1 x_ y_) (e_var_subst_one e2 x_ y_);
 e_var_subst_one (e_lt e1 e2) _ _ := e_lt (e_var_subst_one e1 x_ y_) (e_var_subst_one e2 x_ y_);
 e_var_subst_one (e_fn_call fn0 arg_list) x_ y_ := e_fn_call fn0 (e_list_subst_one arg_list x_ y_) }
where e_list_subst_one (es:list e) (x_ y_: x) : list e := {
 e_list_subst_one nil _ _ := nil;
 e_list_subst_one (e0::es) x_ y_ := e_var_subst_one e0 x_ y_ :: e_list_subst_one es x_ y_
}.

Definition e_var_subst (e5:e) (l:list (x*x)) : e := foldr (fun '(x', y') e' => e_var_subst_one e' x' y') e5 l.

Equations fresh_vars_e (l : list x) (e0 : e) : Prop := {
 fresh_vars_e _ (e_t _) := True;
 fresh_vars_e l (e_var x) := ~ In x l;
 fresh_vars_e l (e_neg e0) := fresh_vars_e l e0;
 fresh_vars_e l (e_not e0) := fresh_vars_e l e0;
 fresh_vars_e l (e_add e1 e2) := fresh_vars_e l e1 /\ fresh_vars_e l e2;
 fresh_vars_e l (e_mul e1 e2) := fresh_vars_e l e1 /\ fresh_vars_e l e2;
 fresh_vars_e l (e_eq e1 e2) := fresh_vars_e l e1 /\ fresh_vars_e l e2;
 fresh_vars_e l (e_lt e1 e2) := fresh_vars_e l e1 /\ fresh_vars_e l e2;
 fresh_vars_e l (e_fn_call fn el) := fresh_vars_el l el }
where fresh_vars_el (l : list x) (el0 : list e) : Prop := {
 fresh_vars_el l nil := True;
 fresh_vars_el l (e1::el0) := fresh_vars_e l e1 /\ fresh_vars_el l el0 }.

Fixpoint fresh_vars_s (l : list x) (s0 : s): Prop :=
  match l with
  | nil => True
  | (y::ys) => lookup y s0 = None /\ fresh_vars_s ys s0
  end.

Definition fresh_vars (l : list x) (e0: e) (s0: s) : Prop :=
  fresh_vars_s l s0 /\ fresh_vars_e l e0.

Definition well_formed (e0: e) (s0: s) (l:list x) : Prop := fresh_vars l e0 s0 /\ NoDup l.

#[export] Instance t_eq_dec : EqDecision t.
Proof.
  unfold EqDecision, Decision.
  decide equality; auto with ott_coq_equality.
Defined.
#[export] Hint Resolve t_eq_dec : ott_coq_equality.

Section e_rec.
  Variables
    (P_e : e -> Set)
    (P_list_e : list e -> Set).

  Hypothesis
    (H_e_t : forall (t5:t), P_e (e_t t5))
    (H_e_var : forall (x5:x), P_e (e_var x5))
    (H_e_neg : forall (e5:e), P_e e5 -> P_e (e_neg e5))
    (H_e_not : forall (e5:e), P_e e5 -> P_e (e_not e5))
    (H_e_add : forall (e1:e), P_e e1 -> forall (e2:e), P_e e2 -> P_e (e_add e1 e2))
    (H_e_mul : forall (e1:e), P_e e1 -> forall (e2:e), P_e e2 -> P_e (e_mul e1 e2))
    (H_e_eq : forall (e1:e), P_e e1 -> forall (e2:e), P_e e2 -> P_e (e_eq e1 e2))
    (H_e_lt : forall (e1:e), P_e e1 -> forall (e2:e), P_e e2 -> P_e (e_lt e1 e2))
    (H_e_fn_call : forall (e_list:list e), P_list_e e_list -> forall (fc5:fc), P_e (e_fn_call fc5 e_list))
    (H_list_e_nil : P_list_e nil)
    (H_list_e_cons : forall (e0:e), P_e e0 -> forall (e_l:list e), P_list_e e_l -> P_list_e (cons e0 e_l)).

  Fixpoint e_ott_rec (n:e) : P_e n :=
    match n as x return P_e x with
    | (e_t t5) => H_e_t t5
    | (e_var x5) => H_e_var x5
    | (e_neg e5) => H_e_neg e5 (e_ott_rec e5)
    | (e_not e5) => H_e_not e5 (e_ott_rec e5)
    | (e_add e1 e2) => H_e_add e1 (e_ott_rec e1) e2 (e_ott_rec e2)
    | (e_mul e1 e2) => H_e_mul e1 (e_ott_rec e1) e2 (e_ott_rec e2)
    | (e_eq e1 e2) => H_e_eq e1 (e_ott_rec e1) e2 (e_ott_rec e2)
    | (e_lt e1 e2) => H_e_lt e1 (e_ott_rec e1) e2 (e_ott_rec e2)
    | (e_fn_call fn5 e_list) => H_e_fn_call e_list
      (((fix e_list_ott_rec (e_l:list e) : P_list_e e_l :=
         match e_l as x return P_list_e x with
         | nil => H_list_e_nil
         | cons e1 xl => H_list_e_cons e1(e_ott_rec e1)xl (e_list_ott_rec xl)
         end)) e_list) fn5
    end.
End e_rec.

#[export] Instance e_eq_dec : EqDecision e.
Proof.
  unfold EqDecision, Decision.
  induction x0 using e_ott_rec with
    (P_list_e := fun e_list => forall e_list', {e_list = e_list'} + {e_list <> e_list'});
    intros; try (destruct y; auto).
  - destruct (decide (t5 = t0)) as [H_t|H_t].
    + by left; rewrite H_t.
    + by right; inv 1.
  - destruct (decide (x5 = x0)) as [H_x|H_x].
    + by left; rewrite H_x.
    + by right; inv 1.
  - destruct (IHx0 y); subst; first by auto.
    by right; inv 1.
  - destruct (IHx0 y); subst; first by auto.
    by right; inv 1.
  - destruct (IHx0_1 y1), (IHx0_2 y2); subst; first by auto.
    + by right; inv 1.
    + by right; inv 1.
    + by right; inv 1.
  - destruct (IHx0_1 y1), (IHx0_2 y2); subst; first by auto.
    + by right; inv 1.
    + by right; inv 1.
    + by right; inv 1.
  - destruct (IHx0_1 y1), (IHx0_2 y2); subst; first by auto.
    + by right; inv 1.
    + by right; inv 1.
    + by right; inv 1.
  - destruct (IHx0_1 y1), (IHx0_2 y2); subst; first by auto.
    + by right; inv 1.
    + by right; inv 1.
    + by right; inv 1.
  - destruct (decide (fc5 = fc0)) as [H_f|H_f].
    + rewrite H_f; destruct (IHx0 l); subst; auto.
      by right; intro Hl; inversion Hl.
    + by right; inv 1.
  - by destruct e_list'; auto.
  - destruct e_list'; first by auto.
    destruct (IHx0 e0); subst.
    + destruct (IHx1 e_list'); subst; first by auto.
      by right; inv 1.
    + by right; inv 1.
Defined.
#[export] Hint Resolve e_eq_dec : ott_coq_equality.

#[export] Instance rhs_eq_dec : EqDecision rhs.
Proof.
  unfold EqDecision, Decision.
  decide equality; auto with ott_coq_equality.
  - apply e_eq_dec.
  - apply list_eq_dec; apply e_eq_dec.
Qed.
#[export] Hint Resolve rhs_eq_dec : ott_coq_equality.

#[export] Instance stmt_eq_dec : EqDecision stmt.
Proof.
  unfold EqDecision, Decision.
  decide equality; auto with ott_coq_equality.
  - apply rhs_eq_dec.
  - apply e_eq_dec.
  - apply e_eq_dec.
  - apply e_eq_dec.
Qed.
#[export] Hint Resolve stmt_eq_dec : ott_coq_equality.

#[export] Instance task_eq_dec: EqDecision task.
Proof.
  unfold EqDecision, Decision.
  decide equality; auto with ott_coq_equality.
  - by destruct (decide (s5 = s0)); [left|right].
  - apply stmt_eq_dec.
Defined.
#[export] Hint Resolve task_eq_dec : ott_coq_equality.

#[export] Instance countable_task: Countable task.
(* is there some automation for this? *)
Admitted.

Definition queue : Set := (gmultiset task).

Definition tasko : Type := (option task).

Inductive cn : Type := (*r configuration *)
 | cn_future (f5:f) (to5:to)
 | cn_object (C5:C) (s5:s) (tasko5:tasko) (queue5:queue)
 | cn_invoc (o5:o) (f5:f) (m5:m) (_:list t).
definitions

(* defns expression_well_typing *)
Inductive typ_e : G -> e -> T -> Prop := (* defn e *)
 | typ_bool : forall (G5:G) (b5:b),
     typ_e G5 (e_t (t_b b5)) T_bool
 | typ_int : forall (G5:G) (z5:z),
     typ_e G5 (e_t (t_int z5)) T_int
 | typ_var : forall (G5:G) (x5:x) (T5:T),
      (lookup x5 G5 = Some (ctxv_T T5 )) ->
     typ_e G5 (e_var x5) T5
 | typ_neg : forall (G5:G) (e5:e),
     typ_e G5 e5 T_int ->
     typ_e G5 (e_neg e5) T_int
 | typ_not : forall (G5:G) (e5:e),
     typ_e G5 e5 T_bool ->
     typ_e G5 (e_not e5) T_bool
 | typ_add : forall (G5:G) (e1 e2:e),
     typ_e G5 e1 T_int ->
     typ_e G5 e2 T_int ->
     typ_e G5 (e_add e1 e2) T_int
 | typ_mul : forall (G5:G) (e1 e2:e),
     typ_e G5 e1 T_int ->
     typ_e G5 e2 T_int ->
     typ_e G5 (e_mul e1 e2) T_int
 | typ_eq : forall (G5:G) (e1 e2:e),
     typ_e G5 e1 T_int ->
     typ_e G5 e2 T_int ->
     typ_e G5 (e_eq e1 e2) T_bool
 | typ_lt : forall (G5:G) (e1 e2:e),
     typ_e G5 e1 T_int ->
     typ_e G5 e2 T_int ->
     typ_e G5 (e_lt e1 e2) T_bool
 | typ_func_expr : forall (e_T_list:list (e*T)) (G5:G) (fc5:fc) (T_5:T),
     (forall e_ T_, In (e_,T_) (map (fun (pat_: (e*T)) => match pat_ with (e_,T_) => (e_,T_) end) e_T_list) -> (typ_e G5 e_ T_)) ->
      (lookup fc5 G5 = Some (ctxv_sig (sig_sig (map (fun (pat_:(e*T)) => match pat_ with (e_,T_) => T_ end ) e_T_list) T_5) )) ->
     typ_e G5 (e_fn_call fc5 (map (fun (pat_:(e*T)) => match pat_ with (e_,T_) => e_ end ) e_T_list)) T_5.
definitions

(* defns function_well_typing *)
Inductive typ_F : G -> F -> Prop := (* defn F *)
 | typ_func_decl : forall (T_x_list:list (T*x)) (G5:G) (T_5:T) (fc5:fc) (e5:e),
      (lookup fc5 G5 = Some (ctxv_sig (sig_sig (map (fun (pat_:(T*x)) => match pat_ with (T_,x_) => T_ end ) T_x_list) T_5) )) ->
     typ_e (foldr (fun (xT : x * T) (G0 : G) => insert (fst xT) (ctxv_T (snd xT)) G0) G5 (map (fun (pat_:(T*x)) => match pat_ with (T_,x_) => (x_,T_) end ) T_x_list) ) e5 T_5 ->
      (NoDup (map (fun (pat_:(T*x)) => match pat_ with (T_,x_) => x_ end ) T_x_list) ) ->
     typ_F G5 (F_fn T_5 fc5 T_x_list e5).
definitions

(* defns evaluation_reduction *)
Inductive red_e : list F -> s -> e -> s -> e -> Prop := (* defn e *)
 | red_var : forall (F_list:list F) (s5:s) (x5:x) (t5:t),
      (lookup x5 s5 = Some ( t5 )) ->
     red_e F_list s5 (e_var x5) s5 (e_t t5)
 | red_neg : forall (F_list:list F) (s5:s) (z5:z),
     red_e F_list s5 (e_neg (e_t (t_int z5))) s5 (e_t (t_int (Z.sub Z.zero z5 ) ))
 | red_not : forall (F_list:list F) (s5:s) (b5:b),
     red_e F_list s5 (e_not (e_t (t_b b5))) s5 (e_t (t_b (negb b5 ) ))
 | red_add : forall (F_list:list F) (s5:s) (z1 z2:z),
     red_e F_list s5 (e_add (e_t (t_int z1)) (e_t (t_int z2))) s5 (e_t (t_int (Z.add z1 z2 ) ))
 | red_mul : forall (F_list:list F) (s5:s) (z1 z2:z),
     red_e F_list s5 (e_mul (e_t (t_int z1)) (e_t (t_int z2))) s5 (e_t (t_int (Z.mul z1 z2 ) ))
 | red_eq : forall (F_list:list F) (s5:s) (z1 z2:z),
     red_e F_list s5 (e_eq (e_t (t_int z1)) (e_t (t_int z2))) s5 (e_t (t_b (Z.eqb z1 z2 ) ))
 | red_lt : forall (F_list:list F) (s5:s) (z1 z2:z),
     red_e F_list s5 (e_lt (e_t (t_int z1)) (e_t (t_int z2))) s5 (e_t (t_b (Z.ltb z1 z2 ) ))
 | red_neg' : forall (F_list:list F) (s5:s) (e5:e) (s':s) (e':e),
     red_e F_list s5 e5 s' e' ->
     red_e F_list s5 (e_neg e5) s' (e_neg e')
 | red_not' : forall (F_list:list F) (s5:s) (e5:e) (s':s) (e':e),
     red_e F_list s5 e5 s' e' ->
     red_e F_list s5 (e_not e5) s' (e_not e')
 | red_add_l : forall (F_list:list F) (s5:s) (e1 e2:e) (s':s) (e':e),
     red_e F_list s5 e1 s' e' ->
     red_e F_list s5 (e_add e1 e2) s' (e_add e' e2)
 | red_add_r : forall (F_list:list F) (s5:s) (e1 e2:e) (s':s) (e':e),
     red_e F_list s5 e2 s' e' ->
     red_e F_list s5 (e_add e1 e2) s' (e_add e1 e')
 | red_mul_l : forall (F_list:list F) (s5:s) (e1 e2:e) (s':s) (e':e),
     red_e F_list s5 e1 s' e' ->
     red_e F_list s5 (e_mul e1 e2) s' (e_add e' e2)
 | red_mul_r : forall (F_list:list F) (s5:s) (e1 e2:e) (s':s) (e':e),
     red_e F_list s5 e2 s' e' ->
     red_e F_list s5 (e_mul e1 e2) s' (e_add e1 e')
 | red_eq_l : forall (F_list:list F) (s5:s) (e1 e2:e) (s':s) (e':e),
     red_e F_list s5 e1 s' e' ->
     red_e F_list s5 (e_eq e1 e2) s' (e_eq e' e2)
 | red_eq_r : forall (F_list:list F) (s5:s) (e1 e2:e) (s':s) (e':e),
     red_e F_list s5 e2 s' e' ->
     red_e F_list s5 (e_eq e1 e2) s' (e_eq e1 e')
 | red_lt_l : forall (F_list:list F) (s5:s) (e1 e2:e) (s':s) (e':e),
     red_e F_list s5 e1 s' e' ->
     red_e F_list s5 (e_lt e1 e2) s' (e_lt e' e2)
 | red_lt_r : forall (F_list:list F) (s5:s) (e1 e2:e) (s':s) (e':e),
     red_e F_list s5 e2 s' e' ->
     red_e F_list s5 (e_lt e1 e2) s' (e_lt e1 e')
 | red_fun_exp : forall (e'_list e_list:list e) (F_list:list F) (s5:s) (fc5:fc) (e_5:e) (s':s) (e':e),
     red_e F_list s5 e_5 s' e' ->
     red_e F_list s5 (e_fn_call fc5 ((app e_list (app (cons e_5 nil) (app e'_list nil))))) s' (e_fn_call fc5 ((app e_list (app (cons e' nil) (app e'_list nil)))))
 | red_fun_ground : forall (T_x_t_y_list:list (T*x*t*x)) (F'_list F_list:list F) (T_5:T) (fc5:fc) (e5:e) (s5:s),
      (well_formed e5 s5 (map (fun (pat_:(T*x*t*x)) => match pat_ with (T_,x_,t_,y_) => y_ end ) T_x_t_y_list) ) ->
      (disjoint (map (fun (pat_:(T*x*t*x)) => match pat_ with (T_,x_,t_,y_) => y_ end ) T_x_t_y_list) (map (fun (pat_:(T*x*t*x)) => match pat_ with (T_,x_,t_,y_) => x_ end ) T_x_t_y_list) ) ->
     red_e ((app F_list (app (cons (F_fn T_5 fc5 (map (fun (pat_:(T*x*t*x)) => match pat_ with (T_,x_,t_,y_) => (T_,x_) end ) T_x_t_y_list) e5) nil) (app F'_list nil)))) s5 (e_fn_call fc5 (map (fun (pat_:(T*x*t*x)) => match pat_ with (T_,x_,t_,y_) => (e_t t_) end ) T_x_t_y_list)) (foldr (fun (xt : x * t) (s0 : s) => insert (fst xt) (snd xt) s0) s5 (map (fun (pat_:(T*x*t*x)) => match pat_ with (T_,x_,t_,y_) => (y_,t_) end ) T_x_t_y_list) ) (e_var_subst e5 (map (fun (pat_:(T*x*t*x)) => match pat_ with (T_,x_,t_,y_) => (x_,y_) end ) T_x_t_y_list) ) .